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Abstract

Gambling prevention of online casino players is a challenging ambition with positive impacts both on player’s
well-being, and for casino providers aiming for responsible gambling. To facilitate this, we propose an
unsupervised deep learning method with an objective to identify players showing signs of problem gambling
based on available data in a form of time series. We compare the transformer-based autoencoder architecture for
anomaly detection proposed by us with recurrent neural network and convolutional neural network autoencoder
architectures and highlight its advantages. Due to the fact that the players’ clinical diagnosis was not part of
the data at hand, we evaluated the outcome of our study by analyzing correlation of anomaly scores obtained
from the autoencoder and several proxy indicators associated with the problem gambling reported in the
literature.

Introduction

Gambling prevention of players with problem
or pathological gambling, currently conceptual-
ized as a behavioural pattern where individuals
stake an object of value (typically money) on the
uncertain prospect of a larger reward [1], [2], is
of high societal importance. Research over the
past decade has revealed multiple similarities be-
tween pathological gambling and the substance
use disorders [3]. With the high accessibility of
the Internet, the incidence of pathological gam-
bling has increased. This disorder can result
in significant negative consequences for the af-
fected individual and his/her family too. There-
fore detecting early warning signs of problem
gambling is crucial for maintaining player’s well-
being.

This work is a joint effort of Slovak National
Competence Center for High-performance
Computing, DOXXbet, ltd. – sports betting
and online casino, and Codium, ltd. – software
developer of the DOXXbet sports betting and
iGaming platform, with the goal to enhance
customer service and players’ engagement
via identification and prevention of gambling
behaviour. This proof of concept is a foundation

for future tools, which will help casino mitigate
negative consequences for players, even for a
price of less provision for the provider, as in
line with European trends in risk management
related to problem gambling.

There has been a lot of research focusing on
real money gambling with the use of machine
learning methods. Most of the studies work with
players’ diagnostic assessment which makes use
of supervised learning possible. In the absence
of clinical diagnoses and indicators of players’ fi-
nancial problems within the dataset, researchers
must rely only on proxy indicators amongst
which voluntary self-exclusion is the most com-
mon. Other symptoms mentioned in the lit-
erature include account closure, complaints to
the online casino provider, requests to increase
spending limits [4], chasing losses by gambling
more, instant gratification (a behaviour when
a player prefers to get immediate but smaller
reward than delayer bigger reward) and many
others [5], [6]. From behavioural data only, it
is not possible with absolute certainty to tell if
the player has a gambling problem. Despite this,
our approach attempts to detect early warning
signs of gambling disorder in an unsupervised



manner and then analyze these symptoms and
other anomalous actions.

One of the recent studies focused on identify-
ing potential gamblers in skill-based cash games
[7] used a combination of long short-term mem-
ory (LSTM) neural network layers and adver-
sarial autoencoder (AE). Authors of this paper
utilize information related to players’ clinical di-
agnosis, therefore do not have to rely on side
symptoms / proxy indicators. Another study
[8] uses objective of segmenting users of online
gambling platforms according to the tendency
of these users to have compulsive gambling be-
haviour. This paper works with unlabelled data.

In our study we propose a completely
unsupervised deep learning approach using
transformer-based AE architecture to detect
anomalies in the dataset - players with anoma-
lous behaviour. The dataset at hand does not
comprehend the clinical diagnosis, and amongst
other proxy indicators mentioned before only
few are available - requests to increase spending
limits, chasing losses by gambling more (referred
to as chasing episodes later in this article), usage
of multiple payment methods, frequent with-
drawals of small amount of money and other
mentioned later in the text. Clearly, not all the
anomalous users must necessarily have prob-
lem gambling, hence the proxy indicators are
used in combination with AE results, namely the
anomaly score. The foundation of our approach
rests on the idea that a compulsive gambler is an
anomaly within the active casino players, with
the literature mentioning their fraction amongst
all players being between 0.5% to 5% for chance-
based games [7].

Data

The data acquired for this research consist of se-
quences of data points collected over time, track-
ing multiple aspects of player’s behaviour such
as frequency and timing of their gaming activ-
ities, frequency and amount of cash deposits,
payment methods used when depositing cash,
information about the bets, wins, losses, with-
drawals and requests for change of deposit limit.

Feature engineering resulted in 19 features in
a form of time series (TS), so that each feature

consists of multiple time stamps. These features
can be classified into three categories - ”time”,
”money” and ”despair”, as inspired by Seth et
al. [7]. Table 1 summarizes the full set of TS
features with a short explanation.

Each feature is a sequence of N values, where
each value stands for one out of N consecutive
time windows. This value was produced by
aggregating daily data in the respective time
window, with the time window length being
specified in the Table 1 together with the infor-
mation about the time window being sliding or
not. Hence, for each sample we needed a history
of N time windows. Feature engineering proce-
dure is displayed in Figure 1 and the final data
shape is depicted in Figure 2.

The length of the sequence N is an important
factor in prediction quality. While a larger N
generally yields better results, increasing N is in
contradiction with our goal to detect anomalies
at the earliest possible time. Thus, smaller value
of N is preferred. After a set of experiments
a series length of 8 was chosen. Three types
of aggregating function were used to create the
features: maximum, minimum or sum.

Let us provide more detailed explanation for
selected features from Table 1:

• Money 10 - Total number of days when a
player did at least two small withdrawals.
This refers to number of days, when a player
withdrew money at least twice a day and the
sum of the withdrawal amounts was <= 30th
percentile of the withdrawal amount sums
for players doing frequent withdrawals (at
least two withdrawals per day).

• Chasing ep. 1 & 2 - Number of days in a time
window when player chased the loss.
Chasing episode event happens when a
player has a peak of losses (local maximum
within a time window) accompanied by a
peak of at least three cash deposits.

See a randomly selected sample (set of 19 TS
for one player, each series representing one fea-
ture) in Figure 3.

Data cleaning

Identifying and removing outliers/abnormal
data points from the training dataset when work-
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Context Feature Time frame Description

Time

Time 1 15 day SW The max. number of games played on a day during a time window.
Time 2 15 day SW Total number of weekend games during a time window.
Time 3 15 day SW Total number of weekday games during a time window.
Time 4 15 day SW Total number of games between 12AM - 6AM during a time window.
Time 5 15 day SW Total number of logins during a time window.

Money

Money 1 1 month SW Net loss incurred in last one month.
Money 2 3 months SW Net loss incurred in last three months.
Money 3 15 day SW Net loss incurred during a time window.
Money 4 15 day SW The max. number of times cash was added in a single day during a time window.
Money 5 15 day SW Number of multiple (> 3) single-day add cash transactions during a time window.
Money 6 15 day SW The max. amount of cash that was added in a single day during a time window.
Money 7 15 day SW Maximum number of different payment modes used in a day over a time window.
Money 8 15 day SW Number of days in a time window when more than two payment modes were used.
Money 9 15 day SW Total number of money withdrawals during a time window.
Money 10 15 day SW Total number of days when a player did at least two small withdrawals.

Despair

Despair 1 15 day SW Min. win ratio in a day over a time window, to detect a bad streak of games.
Despair 2 15 day SW Num. of times in a time window the player tried to increase his daily deposit limit.

Chasing ep. 1 15 day SW Number of days in a time window when player chased the loss.
Chasing ep. 2 5 day TW Number of days in a time window when player chased the loss.

Table 1: List of time-series features used in all of the models. Abbreviations in Time frame columns mean: SW stands for
sliding window and TW stands for time window - in this case the time windows are disjunctive.

ing with AE models for anomaly detection is an
important step to ensure the model learns dom-
inantly on non-anomalous data points [9]. The
dataset at hand presumably does contain anoma-
lous samples, since it is a collection of TS data for
all casino players, including suspect gamblers.

Our approach for dataset cleaning is based
on the idea of using a rule engine. A rule en-
gine is a set of rules that can be utilized as a
simple method aimed at detecting anomalous
players. These rules are based on proxy indica-
tors, namely the number of requests for limit
changes, mean number of players’ logins and
withdrawals and mean number of players’ chas-
ing episodes. In order to apply these rules, we
set the thresholds at the 95th percentile of the
values for each respective proxy indicator. If a
data point satisfies at least three out of these
four rules, it is classified as an outlier and sub-
sequently removed from the training set. Alto-
gether 211 samples were removed, representing
slightly less than 1% of the overall dataset size.

Data normalization

To improve the predictive quality of the model
even further the data was normalized after the
the feature engineering and cleaning steps. Nor-
malization facilitates more balanced contribution
of features within the model. Z-Score normaliza-
tion was chosen after several experiments with
other scaling techniques such as log and minmax.

Z-Score normalization was carried out as fol-
lows: Let x ∈ RD be a vector x = (xi, . . . , xD).
We first compute the mean and the standard
deviation of x:

µx =
1
D

D

∑
i=1

xi (1)

σx =

√√√√ 1
D

D

∑
i=1

(xi − µx)2 (2)

The z-score normalization of x is then calcu-
lated as:

ZN(x) =
x − µx1

σx
∈ RD (3)

where 1 = [1, . . . , 1]T is a D-dimensional vector
of ones. This normalization has a property of
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Figure 1: Visualization of the data aggregation from daily basis into time windows, and eventually to TS features.
t1, ..., t450 represent time stamps for daily data x1, ..., x450. Daily data points from a time window are aggregated into a
single value zi for all i ∈ (1, . . . , 8).

Number of players/samples

8 time windows

19 features

Figure 2: Final data shape obtained after feature engineer-
ing. Each sample is represented by 19 features consisting
of 8 time windows.

transforming outliers in the dataset into values
that are more standardized and comparable to
the rest of the data, making it easier to analyse
and interpret the distribution of the data.

For certain features that exhibited high vari-
ance among players, scaling was done on a per-
player basis, while the remaining features, which
showed low variance, were scaled on a per-
dataset basis. This hybrid normalization proved
to perform better than normalizing all samples
per player or per whole dataset. Features scaled
per-dataset are despair 1 and despair 2.

Data clipping

Data clipping is another technique used in
the study in addition to Z-Score normalization.
Since the data provided for the study is com-
pletely unlabelled and only 211 samples were

removed from the dataset by data cleaning, it is
necessary to eliminate the impact of the remain-
ing outliers by clipping. The clipping was done
using a metric Median Absolute Deviation (MAD)
defined in equation 4.

MAD = median(|xi − x̃|) (4)

where x̃ represents the median of the set of
values x1, x2, . . . , xd. MAD measures the average
distance between each data point and the me-
dian of the dataset. If for a certain value applies

|xi| > K ∗ MAD (5)

where K is a constant, than xi is considered to
be an outlier and therefore is clipped like:

xi = xi − MAD (6)

Chosen value for K was 4.

Model architecture

TS is a set of observations that have been
recorded in an orderly fashion and which are
correlated in time. TS data can be used for fore-
casting of the future values, but also for anomaly
detection, which is an active area of research.
Deep learning is certainly not the only approach
applicable on TS data, methods such as STL
(seasonal-trend) decomposition [10] or regres-
sion trees can be applied as well.
The so-called autoencoder is an unsupervised
Deep learning technique suitable for anomaly
detection for TS data. The idea behind using
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Figure 3: Example of a data point. Each data point contains TS for 19 features. Each feature consists of 8 time
stamps, each representing one 15-day long time window. Values shown are not scaled, neither clipped, but undergo these
transformations prior to entering the model.

this type of neural network to detect anomalies
in data is based on reconstruction ability of the
model. The AE model learns to reconstruct the
data in the training set and since the training
set is expected to contain mostly non anomalous
data points the model learns to reconstruct well
only samples that are normal. Therefore, when
the input data sample is anomalous, trained AE
model cannot reconstruct this data point well
enough which results in high reconstruction error.
Reconstruction error can be used to as anomaly
score of a data sample, where a higher score in-
dicates a greater likelihood of the sample being
an anomaly.

AEs can further be split into three categories
according to what type of layers/architecture
they utilize [11].
First category is the LSTM-based neural network.
LSTM stand for long-short term memory and
it is a type of recurrent neural network which
is well suited for sequential data. Another com-
monly used neural network architecture in CNN-

based. CNN stands for convolutional neural
network. In this approach a 1D convolutional
layers is applied on TS sequence or the TS is
transformed into 2D or 3D array and then use
multidimensional convolutional layers.
Lastly, the transformer-based architecture is a
novel class of deep learning models that were
originally developed for natural language pro-
cessing (NLP), but have successfully been ap-
plied to sequential data / TS analysis too [12].
LSTM and CNN network architectures are both
widely used when working with TS data, but
both of them have some drawbacks when com-
pared to transformer-based architectures. LSTM
and CNN architectures are not designed to cap-
ture long-range time dependencies in the data,
which can limit their ability to make accurate pre-
dictions. Also these two architectures are primar-
ily designed to model sequential relationships,
therefore they do not capture non-sequential re-
lationships (i.e. dependencies between two data
points, that are no adjacent to each other) in the

5



data well, unlike transformers [13].
For every type of AE architecture there exists
an adversarial version. Adversarial autoencoder
(AAE) can turn an AE into a generative model.
In this approach, AE is trained with two objec-
tives, first one being a traditional reconstruction
error criterion, and second an adversarial train-
ing criterion [14]. AAEs are also used in anomaly
detection tasks.

Our approach

Usage of AAE architecture in analogous way as
in [7] has proven not to be suitable for the data
at our disposal.The reason is that the AAEs (as
well as generative adversarial networks) in order
to learn to detect anomalies using the generative
AE and discriminative discriminator needs to be
trained strictly only on normal data samples [15],
[16]. Our dataset, as already mentioned, might
(and almost certainly) does contain anomalous
samples.

However, in order to compare results from our
study with the findings in [7], we used the AE
architecture proposed in the article, but with-
out the discriminator component. Let’s call this
model LSTM A. Another two AE architectures
we applied is an architecture leveraging LSTM
layers as described in the article [17] (LSTM B
model) and an architecture using 1-D convolu-
tional layers (CNN model). Lastly, we trained AE
with architecture based on transformers denoted
as Transformer.

In the transformer-based architecture, both en-
coder and decoder contain Multi Head Attention
layer with four heads and 32 dimensional keys
and values vectors. This self-attention layer is fol-
lowed by Feed Forward Network with dropouts
and residual connections between them. The
whole AE model has slightly more than 100000
trainable parameters. We have done some exper-
iments with increasing the number of trainable
parameters, but this number has proven to be
sufficient, so the results of other experiments are
not be presented here. Transformer-based AE
architecture is visualised on Figure 4. One of
the primary sources of inspiration for our model
architecture is the code example from Keras blog
[18]. This blog post presents an architecture for

Model name Number of parameters
LSTM A 2 435
LSTM B 691 163
CNN 291 299
Transformer 100 951

Table 2: Number of trainable parameters of four evaluated
AE models.

a transformer model for TS classification that
caught our attention due to its effective utiliza-
tion of self-attention mechanisms.

Architectures for LSTM A and LSTM B models
are described in the respective references. CNN
model architecture was produced by us. Both
encoder and decoder contain 5 1-dimensional
convolutional layers followed by batch normaliza-
tion, dropout and maxpooling layers, with 256, 128,
64, 32 and 8 filters in the encoder convolutional
layers (and reversed number of filters in decoder
layers). The total number of parameters for each
of four AE models considered in this work is
summarized in Table 2.

AE models comparison

All of the models were trained on the same
dataset under the same conditions (Adam opti-
mized, Mean Square Error (MSE) loss function).
The dataset contains slightly more than 22,000
samples (with each sample consisting of 19 TS
features). Some players are in the dataset multi-
ple times, because their history of online activity
is long enough to create several TS of length 8.
When this happens, those multiple samples of
one player are treated as completely indepen-
dent.

About 10% of randomly selected data was
used for validation and 10% for testing. The
data was preprocessed identically for all four
models (with cleaning, clipping and z-score nor-
malization).

Training curves The history of training for all
four our models is presented in Figure 5. Blue
curves represent models’ performance on train-
ing set and orange curves performance on vali-
dation set. On the x-axis is the number of epochs
used for training and on the y-axis is the value
of MSE loss.
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Figure 4: Visualization of the transformer-based AE architecture.

For all models the MSE loss drops rapidly at
the beginning of training. The transformer-based
model converged the most quickly amongst of
all the models, approaching values very close
to zero without being overfitted. LSTM A and
CNN models do not show signs of overfitting,
only LSTM B model begun to overfit at around
10th epoch. As for the MSE loss values reached
at the end of training, they are the lowest for
Transformer, followed by LSTM B model.

Reconstruction loss We performed a 3-fold
cross-validation by splitting the data into train-
ing, validation, and test sets, and trained the
models for each split to assess their stability. Re-
sulting average loss values and their variances
are displayed in the Table 3. The average recon-
struction error of Transformer model is signifi-
cantly lower than all the other models. LSTM B
model comes second in the reconstruction per-
formance and CNN model seems to have the
worst prediction performance. Generally, the
test loss is observed to be always higher than
train and validation losses. The reason for this
is that those 211 data points that were removed
from the training set in the data cleaning pro-
cess, were moved to the test set. Without moving

these samples, the test loss for transformer-based
model would be as low as 0.012, for CNN model
0.33, for LSTM A model 0.27, and for LSTM B
model 0.13.

Table 3: Performance of four AE models on training,
validation and test dataset evaluated by cross-validation
expressed in average MSE loss in the first row and variance
of MSE in the second row.

Model name Train Valid. Test
LSTM A AE 0.258 0.269 0.279
Variance 4.2E-05 1.1E-05 1.4E-05
LSTM B AE 0.104 0.126 0.137
Variance 1.4E-06 3.6E-06 1.2E-05
CNN AE 0.316 0.325 0.343
Variance 9.8E-05 1.1E-05 1.1E-04
Transformer-based AE 0.010 0.012 0.015
Variance 3.5E-06 1.4E-06 5.0E-06

More detailed overview of the models’ perfor-
mance is displayed on the Figure 6 as histograms
of loss values of the test set. All histograms have
heavy right tail, which is expected for datasets
containing anomalies. Similarly to the Figure
5, the transformer-based model exhibits signifi-
cantly lower reconstruction loss values (x-axis).
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Figure 5: Training curves for four AE architectures. The x-axis represents the number of epochs and y-axis the value of
MSE (Mean square error) loss.

Prediction ability To get a visual impression of
how well is a TS reconstructed by all four evalu-
ated models, Figure 8 depicts original (blue line)
and predicted data (red line) for a randomly se-
lected anomalous sample. Value of the anomaly
score measured by MSE for each method is spec-
ified in the figure’s heading.

Reconstruction performance of the Transformer
is significantly better than the other models. We
remind that this model is not overfitted and the
sample shown in this figure comes from the test-
ing set. Both CNN and LSTM AE models for TS
data need substantially longer sequence of data
to be able to reconstruct well. The reason for
this is that these models require enough histori-
cal context to be able to capture the underlying
patterns and dependencies in the TS data. LSTM
B AE reconstructs notably better than LSTM A
model, but still not as good as Transformer.

Detected anomalies Last evaluation of mod-
els we performed is a check of match between
detected sets of anomalies. Specifically, we iden-
tified the test samples with the highest anomaly
scores (MSE) by selecting the last five percentiles
of the scores for each model. Then, we com-
pared the sets of samples in these percentiles
between the models to determine if there were
any matches. The results are displayed in detail
in table 4. The greatest match is between CNN
and LSTM A models, where almost 70% of their
identified anomalies match.

Intersection between anomaly sets of all mod-
els is depicted in Figure 7. Each anomaly set
contains 126 data samples (players) and in the
intersection of the anomaly sets of all the models
there are 34 players.

In the rest of the paper we restrict the discus-
sion only on our proposed Transformer AE model,
because it demonstrated superior reconstruction

8



Figure 6: Histograms of reconstruction errors for the test set for four evaluated models. The x-axis displays the value of
anomaly score and the y-axis shows the frequency of the respective value.

Table 4: Match of anomalous test samples between evaluated AE models.

Model name LSTM A LSTM B CNN Transformer
LSTM A 100%
LSTM B 65.1% 100%
CNN AE 69.8% 61.1% 100%
Transformer 41.3% 38.9% 38.9% 100%

ability, and we thus expect, that its ability to
detect anomalies is also vastly better.

Transformer-based AE model
results

As discussed in the Introduction, due to the lack
of clinical diagnosis in our dataset, we can only
rely on proxy indicators when identifying play-
ers with potential problem gambling. Our ap-
proach is to detect the anomalies in the dataset,
but we are aware that not all the anomalies must
indicate the gambling disorder. Therefore, we

correlated the results of the AE model with these
proxy indicators:

• Mean number of logins in a time window.
• Mean number of withdrawals in a time win-

dow.
• Mean number of small and frequent with-

drawals in a time window.
• Mean number of requests for the change of

the deposit limit in a time window.
• Sum of the chasing episodes in the time slot

of N time window.

Figure 9 depicts the correlation of the anomaly
score with the proxy indicators. Each subplot
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Figure 7: Venn diagram for visualisation of intersection
of detected anomaly sets of four evaluated models. The
number in each part of the diagram represents the number
of unique players. Anomaly set of each model contains 126
players (corresponding to 5% of testing set size).

contains 10 bars, each bar representing one
decile of the data samples (i.e. each bar rep-
resents 10% of data samples sorted by anomaly
score). The bar colors represent the category
value of the respective proxy indicator.

A distinctive pattern in players’ behavior can
be observed, where players with larger anomaly
scores tend to exhibit high values for all the in-
dicators evaluated. Higher frequency of logins
is proportionate to higher anomaly score with
more than half of the players in the last decile of
reconstruction error having a mean number of lo-
gins in a time window greater than 50. The same
applies for mean number of cash withdrawals
in a time window. Players with low anomaly
score have almost none or very few withdrawals,
whilst more than one fourth of players in the
last anomaly score decile have two or more with-
drawals in a time window on average. Another
secondary indicator we utilize is the number of
small and frequent withdrawals. Most of the
players with at least one of these events is in
10% of players with the highest MSE. When an-
alyzing another indicator, namely the number
of requests for a deposit limit change, we ob-
serve a more subtle pattern. It is evident that
players in the first five deciles generally have no
requests for a limit change (with very few ex-

ceptions), while as the anomaly score increases,
the frequency of limit change requests also tends
to rise. The last proxy indicator depicted is the
number of chasing episodes. A rising frequency
of these events proportionate to their anomaly
score can be observed. More than half of the
players in the last decile have at least one chas-
ing episode in the time window.

If these plots are overlapped in order to iden-
tify the portion of players fulfilling multiple
proxy indicators, following observations result:
in the last five percentiles of the anomaly scores
98.6% of players satisfy at least one proxy indi-
cator, and 77.3% satisfy at least three indicators.
As for the last two percentiles, so 2% of play-
ers with the highest reconstruction error, almost
90% of them satisfy at least three indicators. The
thresholds used to calculate these proportion are
>= 1 chasing episode, >= 1 limit change, >= 1
small and frequent withdrawal, >= 31 logins
and >= 1.25 withdrawal on average per time
window.

Even though age and gender were not used as
predictors in the models studied, we examined
the demographic profile of the players in relation
to the anomaly score. Figure 10 shows that there
is no clear pattern in the age distribution over
anomaly score deciles with every age category
being present in each decile in comparable mea-
sure. As for the gender, there is a subtle pattern
of women having slightly more significant pres-
ence in the first deciles with lower reconstruction
error.

Conclusion

In this work, we successfully applied a
transformer-based autoencoder (AE) to detect
anomalies in the dataset of online casino play-
ers. The aim was to detect problem gamblers
in dataset at hand in an unsupervised manner.
19 features were derived from the raw time se-
ries (TS) data reflecting players’ behavior in the
context of time, money and despair.

We compared the performance of this architec-
ture with three other AE architectures based on
LSTM and convolutional layers and found that
the transformer-based AE achieved the best re-
sults amongst the four models in terms of recon-
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Figure 8: Prediction performance comparison for four evaluated AE models. The same (testing dataset) data sample
was reconstructed by all the models. Blue lines represent the original data and red lines represent the reconstruction by
respective AE models. The number in the heading of the figures is the anomaly score of the sample.

struction capability. This model also showcases
high correlation with proxy indicators such as
the number of logins, number of player’s with-
drawals, number of chasing episodes and other,
that are commonly mentioned in literature in re-
lation to the gambling disorder. This alignment

of AE’s anomaly score with proxy indicators
enables us to gain insights into prediction’s ef-
fectiveness in identifying players with potential
problem gambling.

Even though these proxy indicators were also
used as predictors, we suggest to use them as a
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Figure 9: Each bar in the subplot represents one decile of anomaly score (MSE). Colors represent the category of the
respective proxy indicator being analyzed with category values specified in the legend.

secondary check when detecting players with po-
tential problem gambling in order to avoid false
positives, as not all anomalies must be linked to
the condition of gambling disorder.

Our findings demonstrate the potential
of transformer-based AEs for unsupervised
anomaly detection tasks in TS data, particularly
in the context of online casino player behavior.
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