Kategórie
Success-Stories Všeobecné

Mapovanie polohy a výšky stromov v PointCloud dátach získaných pomocou LiDAR technológie

Mapovanie polohy a výšky stromov v PointCloud dátach získaných pomocou LiDAR technológie

Cieľom spolupráce medzi Národným superpočítačovým centrom (NSCC) a firmou SKYMOVE, v rámci projektu Národného kompetenčného centra pre HPC, bol návrh a implementácia pilotného softvérového riešenia pre spracovanie dát získaných technológiou LiDAR (Light Detection and Ranging) umiestnených na dronoch.

Zber dát

LiDAR je inovatívna metóda diaľkového merania vzdialenosti, ktorá funguje na princípe výpočtu doby šírenia impulzu laserového lúča odrazeného od objektov. LiDAR vysiela svetelné impulzy, ktoré zasiahnu zem, alebo daný objekt, a vrátia sa späť, kde sú zachytené senzormi. Meraním času návratu svetla LiDAR určí vzdialenosť bodu, v ktorom sa laserový lúč odrazil. 

LiDAR dokáže vysielať 100- až 300 000 impulzov za sekundu, pričom z každého metra štvorcového povrchu zachytí niekoľko desiatok až stoviek impulzov, v závislosti od konkrétneho nastavenia a vzdialenosti snímaného objektu. Týmto spôsobom sa vytvára tzv. mračno bodov (PointCloud) pozostávajúce, potenciálne, z miliónov bodov. Moderným využitím LiDAR-u je zber dát zo vzduchu, kde sa zariadenie umiestňuje na drony, čím sa zvyšuje efektivita a presnosť zberu dát. Na zber dát v tomto projekte boli použité drony od spoločnosti DJI, hlavne dron DJI M300 a Mavic 3 Enterprise (obr. 1). Dron DJI M300 je profesionálny dron navrhnutý pre rôzne priemyselné aplikácie a jeho parametre umožňujú, aby bol vhodným nosičom pre LiDAR.

Dron DJI M300 bol využitý ako nosič pre LiDAR značky Geosun (obr. 1). Ide o strednorozsahový, kompaktný systém s integrovaným laserovým skenerom a systémom na určovanie polohy a natočenia. Vzhľadom na pomer medzi rýchlosťou zberu a kvalitou dát boli dáta snímané z výšky 100 m nad povrchom, čím je možné zosnímať za pomerne krátky čas aj väčšie územia v postačujúcej kvalite.

Zozbierané dáta boli geolokalizované v súradnicovom systéme S-JTSK (EPSG:5514) a Baltskom výškovom systéme po vyrovnaní (Bpv), pričom súradnice sú udávané v metroch alebo metroch nad morom. Okrem lidarových dát bola súčasne vykonaná aj letecká fotogrametria, ktorá umožňuje tvorbu tzv. ortofotomozaiky. Ortofotomozaiky poskytujú fotografický záznam skúmanej oblasti vo vysokom rozlíšení (3 cm/pixel) a s polohovou presnosťou do 5 cm. Ortofotomozaika bola použitá ako podklad pre vizuálne overenie polôh jednotlivých stromov.

Obrázok 1. Dron DJI M300 (vľavo) a LiDAR značky Geosun (vpravo).

Klasifikácia dát

Nosným datasetom, ktorý vstupoval do automatickej identifikácie stromov, bolo lidarové mračno bodov vo formáte LAS/LAZ (nekomprimovaná a komprimovaná forma). LAS súbory sú štandardizovaným formátom pre ukladanie lidarových dát navrhnutý tak, aby zabezpečil efektívne ukladanie veľkého množstva bodových dát s presnými 3D súradnicami. LAS súbory obsahujú informácie o polohe (x, y, z), intenzite odrazu, klasifikácii bodov a ďalšie atribúty, ktoré sú nevyhnutné pre analýzu a spracovanie lidarových dát. Vďaka svojej štandardizácii a kompaktnosti sa LAS súbory často používajú v geodézii, kartografii, lesníctve, urbanistickom plánovaní a mnohých ďalších oblastiach, kde je potrebná detailná a presná 3D reprezentácia terénu a objektov.

Mračno bodov bolo potrebné najskôr spracovať do takej podoby, aby na ňom bolo možné čo najjednoduchšie identifikovať body jednotlivých stromov alebo vegetácie. Ide o proces, pri ktorom sa každému bodu v mračne bodov priradí určitá trieda, čiže hovoríme o klasifikácii.

Na klasifikáciu mračna bodov je možné použiť viacero nástrojov. V našom prípade sme sa, vzhľadom na dobré skúsenosti, rozhodli použiť softvér Lidar360 od spoločnosti GreenValley International [1]. V rámci klasifikácie mračna bodov boli jednotlivé body mračna klasifikované do nasledovných tried: neklasifikované (1), povrch (2), stredná vegetácia (4), vysoká vegetácia (5), budovy (6). Na klasifikáciu bola využitá metóda strojového učenia, ktorá po natrénovaní na reprezentatívnej trénovacej vzorke dokáže automaticky klasifikovať body ľubovoľného vstupného datasetu (obr. 2).

Trénovacia vzorka je vytvorená manuálnym klasifikovaním bodov mračna do jednotlivých tried. Na účely automatizovanej identifikácie stromov sú pre tento projekt podstatné hlavne triedy povrch a vysoká vegetácia. Avšak, pre čo najlepší výsledok klasifikácie vysokej vegetácie je vhodné zaradiť aj ostatné klasifikačné triedy. Trénovacia vzorka bola tvorená súborom viacerých menších oblastí z celého územia a zahŕňala všetky typy vegetácie, či už listnaté alebo ihličnaté, a taktiež rôzne typy budov. Na základe vytvorenej trénovacej vzorky boli následne automaticky klasifikované zvyšné body mračna. Kvalita trénovacej množiny má preto podstatný vplyv na výslednú klasifikáciu celého územia.


Obrázok 2. Ukážka mračna bodov oblasti zafarbeného pomocou ortofotomozaiky (vľavo) a pomocou príslušnej klasifikácie (vpravo) v programe CloudCompare.

Segmentácia dát

Klasifikované mračno bodov bolo následne segmentované pomocou softvéru CloudCompare [2]. Segmentácia vo všeobecnosti znamená rozdelenie klasifikovaných dát na menšie celky – segmenty, ktoré spĺňajú spoločné charakteristické vlastnosti. Pri segmentácii vysokej vegetácie bolo cieľom priradiť jednotlivé body ku konkrétnemu stromu.

Na účely segmentácie stromov bol použitý plugin TreeIso v softvérovom balíku CloudCompare, ktorý automaticky rozpoznáva stromy na základe rôznych výškových a polohových kritérií (obr. 3). Celková segmentácia sa skladá z troch krokov:

  1. Spájanie bodov, ktoré sú blízko seba, do segmentov a odstraňovanie šumu.
  2. Spájanie susedných segmentov bodov do väčších celkov.
  3. Zloženie jednotlivých segmentov do celku, ktorý tvorí jeden strom.

Výsledkom je kompletná segmentácia vysokej vegetácie. Tieto segmenty sa následne uložia do jednotlivých LAS súborov a použijú sa na následné spracovanie pre určenie polohy jednotlivých stromov. Veľkým nedostatkom tohto nástroja je, že pracuje len v sériovom režime, čiže dokáže využiť len jedno CPU jadro, čo značne limituje jeho použitie v HPC prostredí.

Obrázok, na ktorom je snímka obrazovky, softvér, grafický softvér, multimediálny softvér

Automaticky generovaný popis
Obrázok 3. Segmentované mračno bodov v programe CloudCompare použitím plugin modulu TreeIso.

Ako alternatívnu metódu na segmentovanie sme skúmali aj využitie ortofotomozaiky daných oblastí. Pomocou metód strojového učenia sme sa pokúsili identifikovať jednotlivé koruny stromov na snímkach a na základe takto určených geolokalizačných súradníc identifikovať príslušné segmenty v LAS súbore. Na detekciu korún stromov z ortofotomozaiky bol použitý model YOLOv5 [3] s predtrénovanými váhami z databázy COCO128 [4]. Tréningové dáta pozostávali z 230 snímok, ktoré boli manuálne anotované pomocou nástroja LabelImg [5]. Trénovacia jednotka pozostávala z 300 epoch, snímky boli rozdelené do sád po 16 vzoriek a ich veľkosť bola nastavená na 1000×1000 pixelov, čo sa ukázalo ako vhodný kompromis medzi výpočtovou náročnosťou a počtom stromov na daný výsek. Nedostatočná kvalita tohto prístupu bola obzvlášť markantná pre oblasti s hustou vegetáciou (zalesnených oblastí), ako je znázornené na obrázku 4. Domnievame sa, že to bolo spôsobené nedostatočnou robustnosťou zvolenej trénovacej sady, ktorá nedokázala dostatočne pokryť rôznorodosť obrazových dát (obzvlášť pre rôzne vegetatívne obdobia). Z týchto dôvodov sme segmentáciu z fotografický dát ďalej nerozvíjali a sústredili sme sa už iba na segmentáciu v mračne bodov.

Obrázok 4. Segmentovanie stromov v ortofotomozaike pomocou nástroja YOLOv5. Obrázok ilustruje problém detekcie jednotlivých stromov v prípade hustej vegetácie (súvislého porastu).

Aby sme naplno využili možnosti superpočítača Devana, nasadili sme v jeho prostredí knižnicu lidR [6]. Táto knižnica, napísaná v jazyku R, je špecializovaný nástroj určený na spracovanie a analýzu lidarových dát, poskytuje rozsiahly súbor funkcií a nástrojov pre čítanie, manipuláciu, vizualizáciu a analýzu LAS súborov. S knižnicou lidR je možné efektívne vykonávať úlohy ako filtrovanie, klasifikácia, segmentácia a extrakcia objektov priamo z mračien bodov. Knižnica tiež umožňuje interpoláciu povrchov, vytváranie digitálnych modelov terénu (DTM) a digitálnych modelov povrchu (DSM) a výpočet rôznych metrických parametrov vegetácie a štruktúry krajiny. Vďaka svojej flexibilite a výkonnosti je lidR populárnym nástrojom v oblasti geoinformatiky a je zároveň vhodným nástrojom pre prácu v HPC prostredí, keďže väčšina funkcií a algoritmov je plne paralelizovaná v rámci jedného výpočtového uzla, čo umožňuje naplno využívať dostupný hardvér. V prípade spracovania veľkých datasetov, keď výkon alebo kapacita jedného výpočtového uzla už nie je postačujúca, môže byť rozdelenie datasetu na menšie časti, a ich nezávislé spracovanie, cesta k využitiu viacerých výpočtových HPC uzlov súčasne.

V knižnici lidR je dostupná funkcia locate_trees(), ktorá dokáže pomerne spoľahlivo identifikovať polohu stromov. Na základe zvolených parametrov a algoritmu funkcia analyzuje mračno bodov a identifikuje polohu stromov. V našom prípade bol použitý algoritmus lmf pre lokalizáciu založenú na maximálnej výške [7]. Algoritmus je plne paralelizovaný, takže dokáže efektívne spracovať relatívne veľké zvolené oblasti v krátkom čase.

Takto určené polohy stromov sa dajú následne použiť v algoritme silva2016 na segmentáciu vo funkcii segment_trees() [8]. Táto funkcia segmentuje príslušné nájdené stromy do osobitných LAS súborov (obr. 5), podobne ako plugin modul TreeIso v programe CloudCompare. Následne sa takto segmentované stromy v LAS súboroch použijú na ďalšie spracovanie, konkrétne na určenie polohy jednotlivých stromov, napríklad pomocou klastrovacieho algoritmu DBSCAN [9].

Obrázok 5. Polohy stromov zistené pomocou algoritmu “lmf” (vľavo, červené body) a príslušne segmenty stromov určené algoritmom silva2016 (vpravo), pomocou knižnice lidR. 

Detekcia kmeňov stromov pomocou klastrovacieho algoritmu DBSCAN

Na určenie polohy a výšky stromov v jednotlivých LAS súboroch získaných segmentáciou sme použili rôzne prístupy. Výška jednotlivých stromov bola získaná na základe z-ových súradníc pre jednotlivé LAS súbory ako rozdiel minimálnej a maximálnej súradnice mračien bodov. Keďže jednotlivé výseky z mračna bodov obsahovali v niektorých prípadoch aj viac ako jeden strom, bolo potrebné identifikovať počet kmeňov stromov v rámci týchto výsekov.

Kmene stromov boli identifikované na základe klastrovacieho algoritmu DBSCAN, pracujúceho s nasledovnými nastaveniami: maximálna vzdialenosť dvoch bodov v rámci jedného klastra (= 1 meter) a minimálny počet bodov v jednom klastri (= 10). Poloha každého identifikovaného kmeňa bola následne získaná na základe x-ových a y-ových súradníc geometrických stredov (centroidov) klastrov. Identifikácia klastrov pomocou DBSCAN algoritmu je ilustrovaná na obrázku 6.

Obrázok 6. Výseky z mračna bodov, PointCloud-u (stĺpec vľavo) a príslušné detegované klastre vo výške 1-5 metrov (stĺpec vpravo).

Zistenie výšky stromov pomocou interpolácie povrchov

Ako alternatívnu metódu na určenie výšok stromov sme použili tzv. Canopy Height Model (CHM). CHM je digitálny model, ktorý predstavuje výšku stromovej obálky nad terénom. Tento model sa používa na výpočet výšky stromov v lese alebo inom vegetačnom poraste. CHM sa vytvára odčítaním digitálneho modelu terénu (DTM) od digitálneho modelu povrchu (DSM). Výsledkom je mračno bodov alebo raster, ktorý zobrazuje výšku stromov nad povrchom terénu (obr. 7).

Ak teda poznáme súradnice polohy stromu, pomocou tohto modelu môžeme jednoducho zistiť príslušnú výšku objektu (stromu) v danom bode. Výpočet tohto modelu je možné jednoducho uskutočniť použitím knižnice lidR pomocou funkcií grid_terrain(), ktorá vytvára DTM, a grid_canopy(), ktorá počíta DSM.

Obrázok 7. Canopy Height Model (CHM) pre skúmanú oblasť (na osiach X a Y sú uvedené súradnice v metroch), výška každého bodu v metroch je reprezentovaná pomocou farebnej škály.

Porovnanie výsledkov

Pre porovnanie dosiahnutých výsledkov vyššie popísanými prístupmi sme sa zameriavali na oblasť Petržalky v Bratislave, kde už boli vykonané manuálne merania polôh a výšok stromov. Z celej oblasti (približne 3500×3500 m) sme vybrali reprezentatívnu menšiu oblasť o rozmeroch 300×300 m (obr. 2). Získali sme tak výsledky pre plugin modul TreeIso v programe CloudCompare (CC), pričom sme pracovali na PC v prostredí Windows, a výsledky pre algoritmy vo funkciách locate_trees() a segment_trees() pomocou knižnice lidR  v HPC prostredí superpočítača Devana. Polohy stromov sme následne kvalitatívne a kvantitatívne vyhodnotili pomocou algoritmu Munkres (Hungarian Algorithm) [10] na optimálne párovanie. Algoritmus Munkres, tiež známy ako Maďarský algoritmus, je efektívny algoritmus na nájdenie optimálneho párovania v bipartitných grafoch. Jeho použitie pri párovaní stromov s manuálne určenými polohami stromov znamená nájdenie najlepšej zhody medzi identifikovanými stromami z lidarových dát a ich známymi polohami. Následne pri určení vhodnej hranice vzdialenosti v metroch (napríklad 5 m) potom vieme kvalitatívne zistiť počet presne určených polôh stromov. Výsledky sú spracované pomocou histogramov a percentuálne určujú správne polohy stromov v závislosti od zvolenej hranice presnosti (obr. 8). Zistili sme, že obe metódy dosahujú pri hranici vzdialenosti 5 metrov takmer rovnaký výsledok, približne 70% správne určených polôh stromov. Metóda použitá v programe CloudCompare vykazuje lepšie výsledky, resp. vyššie percento pri nižších prahových hodnotách, čo odzrkadľujú aj príslušné histogramy (obr. 8). Pri porovnaní oboch metód navzájom dosahujeme až približne 85% zhody pri prahovej hodnote do 5 metrov, čo poukazuje na kvalitatívnu vyrovnanosť oboch použitých prístupov. Kvalitu dosiahnutých výsledkov ovplyvňuje hlavne presnosť klasifikácie vegetácie v bodových mračnách, pretože prítomnosť rôznych artefaktov, ktoré sú nesprávne klasifikované ako vegetácia, skresľuje finálne výsledky. Algoritmy na segmentáciu stromov nedokážu vplyv týchto artefaktov eliminovať.

Obrázok 8. Histogramy vľavo zobrazujú počet správne identifikovaných stromov v závislosti od zvolenej prahovej hodnoty vzdialenosti v metroch (hore CC metóda a dole lidR metóda). Grafy vpravo ukazujú percentuálnu úspešnosť správne identifikovaných polôh stromov v závislosti od použitej metódy a od zvolenej prahovej hodnoty vzdialenosti v metroch.

Analýza paralelnej efektivity algoritmu locate_trees() v knižnici lidR

Na zistenie efektivity paralelizácie hľadania vrcholov stromov v knižnici lidR, pomocou funkcie locate_trees(), sme daný algoritmus aplikovali na rovnaké študované územie s rôznym počtom CPU jadier – 1, 2, 4 až po 64 (maximum HPC uzla). Aby sme zistili, či je daný algoritmus citlivý aj na veľkosť problému, otestovali sme ho na troch územiach s rôznou veľkosťou – 300×300, 1000×1000 a 3500×3500 metrov. Dosiahnuté časy sú zobrazené v Tabuľke 1 a škálovateľnosť algoritmu je znázornená na obrázku 9. Výsledky ukazujú, že škálovateľnosť algoritmu nie je ideálna. Pri použití približne 20 jadier CPU klesá efektivita algoritmu na približne 50%, pri použití 64 jadier CPU je efektivita algoritmu už len na úrovni 15-20%. Efektivitu algoritmu ovplyvňuje aj veľkosť problému – čím väčšie územie, tým menšia efektivita, aj keď tento efekt nie je až tak výrazný. Na záver môžeme konštatovať, že na efektívne využitie daného algoritmu je vhodné použiť 16-32 CPU jadier a vhodným rozdelením daného skúmaného územia na menšie časti dosiahnuť maximálne efektívne využitie dostupného hardvéru. Použitie viac ako 32 CPU jadier síce už nie je efektívne, ale umožňuje ďalšie urýchlenie výpočtu.

Obrázok 9. Zrýchlenie (SpeedUp) algoritmu lmf vo funkcii locate_trees() knižnice lidR v závislosti od počtu CPU jadier (NCPU) a veľkosti študovaného územia (v metroch).

Záverečné zhodnotenie

Zistili sme, že pre dosiahnutie dobrých výsledkov je extrémne dôležité správne nastavenie parametrov použitých algoritmov, keďže počet a kvalita výsledných polôh stromov sú od nich veľmi závislé. Na získanie čo najpresnejších výsledkov je vhodné vybrať reprezentatívnu časť skúmanej oblasti, manuálne zistiť polohy stromov a následne nastaviť parametre príslušných algoritmov. Takto optimalizované nastavenia môžu následne byť použité na analýzu celej skúmané oblasti.

Kvalitu výsledkov ovplyvňuje taktiež množstvo iných faktorov, ako napríklad ročné obdobie, ktoré má vplyv na hustotu vegetácie, alebo hustota stromov v danej oblasti a druhová variabilita vegetácie. Kvalitu výsledkov ovplyvňuje aj kvalita klasifikácie vegetácie v mračne bodov, pretože prítomnosť rôznych artefaktov, ako sú časti budov, cesty, dopravné prostriedky a iné objekty, môže následne negatívne skresliť výsledky, keďže použité algoritmy na segmentáciu stromov nedokážu tieto artefakty vždy spoľahlivo odfiltrovať.

Z hľadiska efektivity výpočtov môžeme konštatovať, že použitie HPC prostredia poskytuje zaujímavú možnosť násobného urýchlenia vyhodnocovacieho procesu. Na ilustráciu môžeme uviesť, že spracovanie, napríklad, celej skúmanej oblasti Petržalky (3500×3500 m) trvalo na jednom výpočtovom uzle HPC systému Devana približne 820 sekúnd, pri využití všetkých (t.j. 64) CPU jadier. Spracovanie danej oblasti v programe CloudCompare na výkonnom PC,  pri použití jedného CPU jadra, trvalo približne 6200 sekúnd, čo je asi 8-krát pomalšie.

Plná verzia článku SK

Autori
Marián Gall – Národné superpočítačové centrum
Michal Malček – Národné superpočítačové centrum
Dávid Murín – SKYMOVE s. r. o.
Robert Straka – SKYMOVE s. r. o.

Zdroje:

[1] https://www.greenvalleyintl.com/LiDAR360/

[2] https://github.com/CloudCompare/CloudCompare/releases/tag/v2.13.1

[3] https://github.com/ultralytics/yolov5

[4] https://www.kaggle.com/ultralytics/coco128

[5] https://github.com/heartexlabs/labelImg

[6] Roussel J., Auty D. (2024). Airborne LiDAR Data Manipulation and Visualization for Forestry Applications.

[7] Popescu, Sorin & Wynne, Randolph. (2004). Seeing the Trees in the Forest: Using Lidar and Multispectral Data Fusion with Local Filtering and Variable Window Size for Estimating Tree Height. Photogrammetric Engineering and Remote Sensing. 70. 589-604. 10.14358/PERS.70.5.589.

[8] Silva C. A., Hudak A. T., Vierling L. A., Loudermilk E. L., Brien J. J., Hiers J. K., Khosravipour A. (2016). Imputation of Individual Longleaf Pine (Pinus palustris Mill.) Tree Attributes from Field and LiDAR Data. Canadian Journal of Remote Sensing, 42(5). 

[9] Ester M., Kriegel H. P., Sander J., Xu X.. KDD-96 Proceedings (1996) pp. 226–231

[10] Kuhn H. W., “The Hungarian Method for the assignment problem”, Naval Research Logistics Quarterly, 2: 83–97, 1955


Mapovanie polohy a výšky stromov v PointCloud dátach získaných pomocou LiDAR technológie 25 júl - Cieľom spolupráce medzi Národným superpočítačovým centrom (NSCC) a firmou SKYMOVE, v rámci projektu Národného kompetenčného centra pre HPC, bol návrh a implementácia pilotného softvérového riešenia pre spracovanie dát získaných technológiou LiDAR (Light Detection and Ranging) umiestnených na dronoch.
Workshop: POP3 Profiling and Optimisation Tools 16 júl - Pozývame vás na zaujímavé podujatie POP3 Profiling and Optimisation Tools 46th VI-HPS Tuning Workshop. Podujatie je organizované POP3 CoE v spolupráci s Národnými kompetenčnými centrami pre HPC zo Slovenska, Česka, Poľska a Rakúska Maďarska a Slovinska.
Call for Ideas: Hľadáme slovenských MSP partnerov pre projektové konzorcium FFPlus 4 júl - NCC Slovakia hľadá slovenských MSP partnerov na vytvorenie konzorcia pre návrh prestížneho projektu FFPlus. Cieľom je využiť vysokovýkonné počítanie pri riešení špecifických obchodných výziev zahŕňajúcich napr. modelovanie a simulácie, analýzu údajov, AI atď.
Kategórie
Calls-Current Všeobecné

Workshop: POP3 Profiling and Optimisation Tools

Workshop: POP3 Profiling and Optimisation Tools

Pozývame vás na zaujímavé podujatie POP3 Profiling and Optimisation Tools 46th VI-HPS Tuning Workshop. Podujatie je organizované POP3 CoE v spolupráci s Národnými kompetenčnými centrami pre HPC zo Slovenska, Česka, Poľska a Rakúska Maďarska a Slovinska.

Virtual Institute – High Productivity Supercomputing (VI-HPS) je iniciatíva, ktorej cieľom je zvýšiť produktivitu superpočítačových aplikácií poskytovaním komplexnej sady nástrojov a metodológií na analýzu výkonu, debugovanie a ladenie. VI-HPS spája odborné znalosti a zdroje rôznych organizácií na podporu vývoja a optimalizácie vysokovýkonných počítačových aplikácií.

Workshop je navrhnutý formou kolaboratívneho učenia, priamo na ladení aplikácií. Účastníci vytvoria dva- alebo viacčlenné tímy, ktoré budú pracovať s rovnakými alebo úzko súvisiacimi aplikačnými kódmi.

  • Prvý deň workshopu predstaví účastníkom POP Center of Excellence (CoE), jeho služby, metodiku a nástroje na analýzu výkonu.
  • Druhý deň je venovaný open source multiplatformovým nástrojom na analýzu behu MPI+OpenMP aplikácií na CPU architektúrach.
  •  Tretí deň účastníkom priblíži pokročilejšie koncepty vrátane analýzy behu aplikácií na kombinácii architektúr CPU a GPU. Účastníci sa oboznámia s používaním súprav nástrojov Paraver/Extrae a Scalasca/Score-P/CUBE pre CPU a GPU.

Paraver/Extrae je sada nástrojov na sledovanie a analýzu efektivity behu paralelných aplikácií. Extrae podrobne zachytáva inštrukcie počas behu programu, zatiaľ čo Paraver poskytuje široké možnosti vizualizácie a analýz, ktoré pomáhajú identifikovať úzke hrdlo výkonu a optimalizovať paralelný kód.

Scalasca/Score-P/CUBE je integrovaná sada nástrojov pre analýzu výkonu paralelných aplikácií. Score-P zhromažďuje údaje o výkone v profiloch, ako aj v záznamoch o vykonaných inštrukcií, Scalasca analyzuje a identifikuje problematický výkon a CUBE uľahčuje analýzu výsledkov a pomáha vývojárom ladiť ich aplikácie.

Okrem spomenutých nástrojov budú počas workshopu účastníkom k dispozícii aj ďalšie nástroje z POP CoE.

Cieľová skupina a účel kurzu:
Účastníci sa naučia používať nástroje na analýzu paralelného výkonu vyvinuté v (POP) CoE a príslušnú metodiku aplikácie týchto nástrojov na posúdenie výkonu a efektívnosti škálovania ich vlastných paralelných aplikačných kódov.

Level
Stredne pokročilí/pokročilí, nie sú potrebné žiadne znalosti o nástrojoch analýzy efektivity paralelizacie (hoci skúsenosti s profilovaním sériového kódu sú výhodou). Od účastníkov sa však očakáva, že majú skúsenosti s kompiláciou a spúštaním (ideálne, aj hybridných CPU – GPU) paralelných aplikácií.

Formát kurzu
Praktická časť (hands-on) bude k dispozícii iba pre F2F účastníkov, ktorí by si mali priniesť svoje kódy, aby na nich mohli pracovať.

Výukové/prednáškové časti budú dostupné pre neobmedzený počet účastníkov, ktorí sa môžu zúčastniť online.

Prerekvizity
Účastníci by mali mať skúsenosti s jedným alebo viacerými prístupmi k paralelnému programovaniu, ako sú MPI alebo OpenMP (na CPU), a pokiaľ možno aj s použitím OpenMP, OpenACC, CUDA al pod. pre GPU. Pri registrácii na workshop by účastníci mali uviesť programovacie jazyky a prístupy používané v ich aplikačných kódoch, spolu s príslušnými požiadavkami / závislosťami potrebných framework-ov / knižníc. Upozorňujeme, že aplikácie využívajúce AI/ML framework-y, ako napr. TensorFlow, nie sú vhodné pre tento workshop.

Technické požiadavky
Účastníci s vlastným aplikačným kódom by ich mali mať nainštalované a spustiteľné na superpočítači Karolina pred samotným podujatím. Taktiež by mal mať pripravený reprezentatívny, testovací prípad, vhodný na spustenie na jednom výpočtovom uzle s behom trvajúcim rádovo minúty. Použité nástroje budú dostupné na superpočítači Karolina (partície CPU a GPU). Účastníci si však môžu nainštalovať grafické nástroje aj na svoje vlastné notebooky. Každý účastník získa pred podujatím prístup k spomenutému HPC klastru.

Začiatok: 4.09.2024. o 9:00 CET
Koniec: 6.09.2024 o 17:00 CET
Miesto: online a F2F v IT4Innovations v Ostrave

Podujatie bude prebiehať v angličtine.

Viac informácií o podujatí
Registrácia

Kategórie
Calls-Current Všeobecné

Call for Ideas: Hľadáme slovenských MSP partnerov pre projektové konzorcium FFPlus

Call for Ideas: Hľadáme slovenských MSP partnerov pre projektové konzorcium FFPlus

NCC Slovakia hľadá slovenských MSP partnerov na vytvorenie konzorcia pre návrh prestížneho projektu FFPlus. Cieľom je využiť vysokovýkonné počítanie pri riešení špecifických obchodných výziev zahŕňajúcich napr. modelovanie a simulácie, analýzu údajov, AI atď.

Vybrané MSP môžu využívať našu a najmodernejšiu európsku infraštruktúry Tier-0 HPC, optimalizácie a/alebo paralelizácie kódovej efektívnosti a technickej podpory. Očakávaným výstupom je úspešný príbeh vo forme White Paper bez povinnosti zverejňovať detaily technického riešenia alebo akékoľvek iné vlastnícke / IP informácie alebo údaje.

Čo ponúkame:

  • HPC infraštruktúra: prístup k najmodernejším HPC systémom
  • Technická podpora a spoločný vývoj: odborné poradenstvo v oblasti využitia HPC, pracovného postupu a optimalizácie a paralelizácie kódu
  • Aplikačné poradenstvo: NCC Slovensko bude sprevádzať a sprevádzať partnerov počas celého procesu podávania žiadostí

Očakávaný výstup:

  • White Paper: krátky príbeh o úspechu dokumentujúci obchodný dopad dosiahnutý prijatím HPC. (Pre tento výstup neexistuje podmienka open science.)

Kľúčové oblasti zamerania:

  • Prevzatie HPC malými a strednými podnikmi: zameranie sa na podniky bez predchádzajúcich skúseností s HPC na riešenie skutočných výziev
  • Pozitívny vplyv na podnikanie: ukážte, ako prijatie HPC vedie k hmatateľným obchodným výhodám
  • Rôzne aplikačné domény: uprednostňovanie projektov s najvyšším potenciálom obchodného vplyvu.

Spôsobilosť:

  • Slovenské MSP: musia mať menej ako 250 zamestnancov a ročný obrat nižší ako 50 miliónov EUR
  • Neorientované na výskum: MSP by mali byť komerčne motivované, zameranie na akademický/základný výskum sa nepodporuje

Podrobnosti projektu:

  • Uzávierka prihlášok: 4. septembra 2024, 17:00 bruselského času
  • Trvanie projektu: maximálne 15 mesiacov, od 1. januára 2025
  • Rozpočet financovania: celková suma 4 milióny EUR na všetky projekty
  • Maximálne financovanie experimentu: do 200 000 EUR, do 150 000 EUR na organizáciu v konzorciu. Hlavný účastník, teda SME, sa môže zúčastniť iba jedného experimentu
  • Celkový maximálny počet partnerov konzorcia: 5 – hlavný účastník a podporní účastníci

Očakávania návrhu:

  • Zosúladenie: jasne definujte obchodné výzvy a nevyhnutnosť použitia HPC
  • Vplyv: prezentujte potenciálny pozitívny vplyv na podnikanie
  • Ciele: stanovte si konkrétne, dosiahnuteľné ciele
  • Konzorcium: zahrňte všetky potrebné strany na efektívnu realizáciu projektu
  • Zdroje a náklady: načrtnite požadované zdroje a súvisiace náklady
  • Ochrana údajov: vyriešte akékoľvek obavy týkajúce sa ochrany údajov
  • Success Stories: podpora pri vytváraní publikovateľných Success Stories

Pokyny na odoslanie:

  • Formát: návrhy musia byť predložené v angličtine a pozostávajú z dvoch častí: časť A (administratívne informácie) a časť B (návrh)
  • Elektronické predkladanie: návrhy sa musia podávať elektronicky

Pridajte sa k nám a ukážte transformačný potenciál HPC pre MSP. Kontaktujte nás ešte dnes, aby sme mohli vybudovať partnerstvo a spoločne sa uchádzať o tento projekt.


Fortissimo: Výzva pre malé a stredné podniky

Kategórie
Calls-Current Všeobecné

Fortissimo: Výzva pre malé a stredné podniky

Fortissimo: Výzva pre malé a stredné podniky

Projekt FFplus spustil novú otvorenú výzvu pre európske malé a stredné podniky. Hľadajú agilné inovatívne firmy, ktoré sa rozhodnú využiť superpočítače v praxi a získať tak konkurenčnú výhodu na trhu.

Projekt FFplus je už štvrtým pokračovaním veľmi úspešnej iniciatívy, ktorá sa priamo zaoberá tým, ako pomáhať podnikom prekonať prekážky pri využití superpočítačov a vysoko výkonnej dátovej analýzy v praxi alebo pri práci a vývoji generatívnej AI. Cieľom je predovšetkým posilniť globálnu konkurencieschopnosť európskeho priemyslu.

V minulých rokoch otvorenými výzvami úspešne prešli už desiatky firiem z celej Európy, ktoré využili superpočítače. Nechajte sa inšpirovať ich príbehy, nájdete ich na webe FFplus.

Výzva projektu FFplus je rozdelená na 2 častí:

  1. BUSINESS EXPERIMENTS

Prvá časť výzvy je určená pre podniky bez predchádzajúcich skúseností so superpočítaním naprieč všetkými odbormi. V rámci tejto výzvy majú podniky príležitosť prihlásiť svoje “experimenty”, teda projekty riešiace konkrétnu business výzvu s pomocou superpočítačových technológií, vysoko výkonnej dátovej analýzy alebo umelej inteligencie. Predpokladaný čas trvania experimentu max. 15 mesiacov s plánovaným začatím 1. januára 2025.

Medzi všetky vybrané projekty sa rozdelí suma určená na financovanie experimentov vo výške 4 milióny EUR.

Uzávierka na podanie žiadostí je 4. septembra 2024 o 17.00 h.

  1. INNOVATION STUDIES

Druhá časť výzvy FFplus podporí firmy a startupy, ktoré už pôsobia v oblasti generatívnej AI, a ktorým chýbajú potrebné výpočtové zdroje na vývoj vlastných modelov. Cieľom je uľahčiť a posilniť technologický rozvoj európskych firiem v oblasti AI.

Zúčastnené podniky budú podporované pri zvyšovaní svojho inovačného potenciálu využívaním nových modelov generatívnej UI, ako sú veľké jazykové modely (LLM), a to na základe svojich existujúcich odborných znalostí, aplikačnej oblasti, obchodného modelu a potenciálu pre expanziu.

Prihlásené „inovačné štúdie“ musia na vývoj a prispôsobenie generatívnych modelov AI (pr. LLM) využívať rozsiahle európske superpočítačové zdroje (pre-exascale a exascale).

Medzi všetky vybrané čiastkové projekty sa rozdelí suma určená na financovanie experimentov vo výške 4 milióny EUR.

Uzávierka na podanie žiadostí je 4. septembra 2024 o 17.00 h.

Zaujala vás táto príležitosť? Viac informácií sa dozviete na webe projektu FFplus.

S podaním projektu Vám radi pomôžu experti Národného centra kompetencie pre HPC – neváhajte nás kontaktovať.

Kategórie
Success-Stories Všeobecné

Implementácia metódy čiastočne riadeného učenia Uni-Match do metódy Frame Field Learning pre úlohu extrakcie budov z leteckých snímok

Implementácia metódy čiastočne riadeného učenia Uni-Match do metódy Frame Field Learning pre úlohu extrakcie budov z leteckých snímok

Extrakcia budov v Geografických informačných systémoch (GIS) je kľúčová pre urbanistické plánovanie, environmentálne štúdie a riadenie infraštruktúry, pretože umožňuje presné mapovanie stavieb, vrátane odhaľovania nelegálnych stavieb za účelom dodržiavania právnych predpisov, alebo efektívnejšieho vyberania daní. Integrácia extrahovaných údajov o budovách s inými geopriestorovými vrstvami zlepšuje pochopenie dynamiky miest a priestorových vzťahov. Vzhľadom na rozsah a zložitosť týchto úloh rastie potreba automatizovať extrakciu budov pomocou techník hlbokého učenia, ktoré ponúkajú vyššiu presnosť a efektívnosť pri spracovaní veľkých geopriestorových dát.

Ilustračný obrázok

V súčasnosti, väčšina najmodernejších segmentačných modelov hlbokého učenia poskytuje výstup iba v rastrovej forme. Avšak GIS často potrebujú dáta vo vektorovej forme. Jednou z metód, ktorá dokáže generovať dáta vo vektorovej forme, je Frame Field learning. Táto metóda generuje okrem segmentačnej masky aj frame field pole, ktoré obsahuje štrukturálne informácie o objektoch, ktoré sa následne využívajú v procese vektorizácie.

Modely Frame Field learningu sú trénované metódou “s učiteľom” (z angl. “supervised learning”), ktorá potrebuje veľké množstvo anotovaných dát. Na získanie takéhoto množstva kvalitných dát je potrebná manuálna ľudská práca, ktorá však môže byť zdĺhavá a nákladná. Jednou z metód, ktorá môže znížiť závislosť od anotovaných dát, je “učenie s čiastočným učiteľom”, resp. “čiastočne riadené učenie“ (z angl. “semi-supervised learning”). Tento prístup učenia využíva nielen anotované dáta, ale aj množinu neanotovaných dát.

Cieľom tejto spolupráce medzi Národným kompetenčným centrom pre HPC a Geodeticca Vision s.r.o. bolo identifikovať, implementovať a vyhodnotiť vhodnú metódu učenia s čiastočným učiteľom pre Frame Field learning.

Metódy
Frame Field learning

Hlavnou myšlienkou Frame Field learning [1] metódy je pomôcť vektorizačnému algoritmu vyriešiť nejednoznačné prípady pri vektorizácii, ktoré sú spôsobené diskrétnou pravdepodobnostnou segmentačnou mapou (výstup zo segmentačného modelu), a to pridaním tzv. frame fields poľa (viď. Obrázok 1) ako ďalšieho výstupu z neurónovej siete, reprezentujúceho geometrické charakteristiky budov.

Frame field pole

Frame field je vektorové pole rádu 4, čo znamená, že každému bodu v rovine priradí 4 smerové vektory. Protiľahlé vektory majú rovnakú hodnotu, ale s opačným znamienkom, takže každému bodu v rovine je priradený vektor {u, −u, v, −v}. Tieto vektory postačujú na definovanie tvaru budov, ktoré sú z veľkej časti pravidelného tvaru s pravouhlými rohmi.


Obrázok 1: Ukážka frame field poľa definovaného pre budovu z trénovacej sady [1].

Frame Field learning

Obrázok 2: Diagram procesu Frame Field learning [1].

Proces metódy Frame Field learning môžeme zosumarizovať nasledovne:

  1. Vstupom do neurónovej siete je RGB obraz o veľkosti 3 x V x Š.
  2. Na generovanie mapy príznakov (z angl. “feature map”) je možné využiť rôzne segmentačné architektúry, napr. U-Net.
  3. Učenie je supervizované (patrí medzi metódy učenia s učiteľom), pričom pre učenie segmentačných masiek sa využívajú označené rastrované polygóny pre interiér a hranice budov. Ako stratová funkcia sa využíva lineárna kombinácia funkcií cross-entropy a Dice loss.
  4. Pre učenie samotného Frame Field poľa sa využívajú vektory polygónov označených budov, kde konzistentnosť a presnosť Frame Field poľa zabezpečujú tri stratové funkcie:
    1. Lalign stratová funkcia riadi správne natočenie Frame Field poľa na smery dotyčnice vektoru polygónu.
    1. Lalign90 stratová funkcia zabraňuje, aby sa Frame Field pole degradovalo na priamkové pole.
    1. Lsmooth zabezpečuje hladký priebeh Frame Field poľa.
  5. Pre zachovanie konzistentnosti medzi segmentačnou pravdepodobnostnou mapu a Frame Field výstupom sú definované regularizačné stratové funkcie, ktoré zarovnávajú Frame Field pole s gradientmi segmentačnej mapy.

Vektorizácia

Obrázok 3: Vizualizácia procesu vektorizácie [1].

Proces vektorizácie transformuje výstup z natrénovanej neurónovej siete do topologicky čistých vektorov pomocou algoritmu Active Skeleton Model (ASM). Princíp algoritmu spočíva v iteratívnom posúvaní vrcholov skeletového grafu do ich ideálnej pozície. Skeletový graf je vygenerovaný pomocou morfologickej operácie “thinning” z gradientu segmentačnej mapy. Iteratívny posun je riadený gradientovou optimalizačnou metódou, ktorej cieľom je minimalizovať energetickú funkciu, ktorá má nasledujúce zložky:

  1. Eprobability – riadi prispôsobenie skeletového grafu kontúram pravdepodobnostnej mapy budovy na konkrétnu hodnotu pravdepodobnosti (napr. 0.5)
  2. Eframe field align – riadi zarovnanie každej hrany skeletového grafu na Frame Field pole.
  3. Elength – zaisťuje homogénnu distribúciu vrcholov skeletového grafu.

UniMatch metóda čiastočne riadeného učenia

UniMatch [2], pokročilá metóda učenia s čiastočným učiteľom z kategórie regulátorov konzistentnosti, stavia na základných princípoch vytvorených metódou FixMatch [3], ktorá je základnou metódou v tejto kategórií algoritmov. Funguje na princípe pseudo-označovania (z angl. “pseudo-labeling“) v kombinácií s reguláciou konzistentnosti.

Základný princíp metódy FixMatch spočíva v generovaní pseudo-označení (anotácií) pre neanotované dáta, pomocou predikcií neurónovej siete. To znamená, že pre slabo perturbovaný neanotovaný vstup xw sa vygeneruje predikcia pw, ktorá slúži ako pseudo-označenie pre predikciu silne perturbovaného vstupu xs. Následne sa vypočíta hodnota chybovej funkcie, napr. cross-entropy(pw,  ps), pričom do úvahy sa berú iba tie oblasti z pw, ktoré majú hodnotu pravdepodobnosti väčšiu ako daný prah, napr. >0.95. 

Rozšírenie metódy UniMatch oproti metóde FixMatch spočíva v dvoch princípoch:

  1. UniPerb (Unified Perturbations for Images and Features) – aplikácia perturbácie na úrovni príznakov (z angl. “feature perturbation“). V praxi to znamená, že na výstup (teda príznak – feature) z encoder vrstvy neurónovej siete sa aplikuje dropout funkcia, ktorá náhodne vynuluje niektoré príznaky. Takto upravený výstup z encoder vrstvy následne vstupuje do decoder časti siete, ktorá vygeneruje pfp.
  2. DusPerb (Dual-Stream Perturbations) – namiesto jednej silnej perturbácie sa využívajú dve silné perturbácie xs1 xs2.
Obrázok 4: (a) FixMatch základná metóda, (b) použitá UniMatch metóda. FP je označenie pre feature perturbation (perturbácia príznakov), w ako weak (slabá) a s ako strong (silná) perturbácia [2].

V konečnom dôsledku máme tri stratové funkcie – cross-entropy(pw,  pfp), cross-entropy(pw,  ps1), cross-entropy(pw,  ps2). Tie sa nakoniec lineárne kombinujú so supervizovanou stratovou funkciou.

Táto metóda v súčasnosti patrí medzi state-of-the-art metódy učenia s čiastočným učiteľom. Hlavnou výhodou tejto metódy je jej jednoduchosť pri implementácií a nevýhodou je jej citlivosť na výber vhodnej slabej a silnej perturbácie.

Integrácia UniMatch metódy do Frame Field učenia

Implementácia UniMatch do Frame Field learning frameworku

Aby sme mohli implementovať UniMatch metódu do Frame Field leagning štruktúry, potrebovali sme najprv definovať slabú a silnú perturbáciu v kontexte leteckých snímok. Ako slabé perturbácie sme zvolili základné priestorové transformácie obrazu, vrátane rotácie, zrkadlenia a vertikálneho/horizontálneho prevrátenia. Všetky tieto transformácie sú oprávnené pre letecké snímky.

V prípade silných perturbácií sme použili fotometrické transformácie. Tie zahŕňajú úpravy odtieňa, farby, či jasu obrazu. Poskytujú výraznejšie zmeny snímok než s použitím priestorových transformácií. 

Dôležitým krokom bola implementácia perturbácie na úrovni príznakov (feature perturbation).   Túto perturbáciu sme implementovali ako dropout mechanizmus vo vrstve medzi encoder a decoder časťami architektúry U-Net. Tento mechanizmus zahodí (nastaví na nulu) náhodne vybrané hodnoty príznakov (výstup z encoder vrstvy). Takto upravené hodnoty výstupu z encoder časti siete vstupujú ďalej do decoder časti U-Net architektúry.

V prípade dual-stream perturbácií sme prispôsobili Frame Field framework tak, aby využíval dve silné perturbácie. Predikcia pre slabú perturbáciu sa použila ako pseudo-označenie pre dve silné perturbácie (preto označenie dual-stream). Dve silné perturbácie prispievajú k celkovej robustnosti a efektívnosti modelu.

Prostredníctvom týchto úprav bola UniMatch metóda úspešne integrovaná do Frame Field learning algoritmu, čím sa zvýšila jeho schopnosť efektívne spracúvať a učiť sa z anotovaných a hlavne neanotovaných dát.

Experimenty
Dáta
Anotované dáta

Anotované dáta použité v štúdii pochádzajú z troch rôznych zdrojov, detaily sú uvedené v Tabuľke 1.

Tabuľka 1: Prehľad troch zdrojov anotovaných dát použitých na trénovanie modelov.

Neanotované dáta

Neanotované dáta (verejne dostupné vysoko kvalitné letecké snímky) pochádzajú z Geodetického a kartografického ústavu (GKÚ) [6]. Pri výbere sme sa zamerali na oblasť s rozlohou 7 000 km2, čím bola zaistená diverzita rôznych povrchov krajín a mestských prostredí.

Spracovanie dát: Patching

Anotované aj neanotované snímky boli spracované pomocou metódy “patching”,ktorá obraz rozdeľuje na malé časti veľkosti 320x320px. Táto veľkosť bola špecificky vybraná tak, aby vyhovovala požiadavkám pre vstup zvolenej neurónovej siete. Takýmto spôsobom vzniklo z anotovaných dát približne 55 000 malých častí a z neanotovaných dát okolo 244 000 častí.

Trénovanie
Architektúra modelu

Použitý model sme navrhli s pomocou U-Net architektúry s EfficientNet-B4 základom. Táto kombinácia poskytuje  dobrú rovnováhu presnosti a efektívnosti, čo je veľmi dôležité pri práci s komplexnými segmentačnými úlohami. EfficientNet-B4 ako základ neurónovej siete bol vybraný pre optimálnu rovnováhu medzi spotrebou pamäte a výkonom. V metóde Frame Field learning sa U-Net architektúra ukázala byť vysoko efektívna, o čom svedčia výsledky použitia tejto siete v rôznych štúdiách.

Trénovací proces

Na trénovanie sme použili AdamW optimalizátor, ktorý kombinuje výhody Adam optimalizácie s regularizačnou metódou “weight decay”, čím pomáha modelu lepšie generalizovať. Aby sme sa vyhli pretrénovaniu modelu, použili sme L2 regularizáciu a taktiež bola použitá metóda ReduceLROnPlateau na optimalizáciu parametra rýchlosti učenia. Táto metóda upravuje parameter rýchlosti učenia na základe validačnej straty.

Úpravy potrebné pre implementáciu učenia s čiastočným učiteľom

Kľúčovým aspektom nášho trénovania bolo nastavenia podielu anotovaných a neanotovaných obrázkov. Experimentovali sme s pomermi od 1:1 do 1:5 (počet anotovaných : počet neanotovaných). Takýmto spôsobom sme zisťovali, ako rôzne množstvá neanotovaných dát ovplyvňujú trénovací proces. Identifikovali sme optimálny pomer pre trénovanie nášho modelu tak, aby bolo zachované efektívne učenie s využitím metódy učenia s čiastočným učiteľom.

Vyhodnotenie modelu

Na vyhodnotenie nášho modelu na extrakciu budov sme zvolili metriky, ktoré precízne merajú ako presne sa predikcie zhodujú so skutočnými štruktúrami.

Intersection over Union (IoU)

Kľúčovou metrikou, ktorú sme využívali je metrika s názvom Intersection over Union (IoU). Počíta zhodu medzi predikciami modelu a skutočným tvarom budov. Hodnota skóre IoU blízka 1 znamená, že naše predikcie sú podobné skutočným budovám. Táto metrika je nevyhnutná na posúdenie geometrickej presnosti pre segmentované oblasti, pretože odráža presnosť vytýčenia hraníc budov. Okrem toho, vyhodnotením pomeru správne predikovanej oblasti ku kombinovanej oblasti (zjednotenie oblasti predikcie a skutočnej oblasti), nám IoU poskytuje jasnú mieru efektivity modelu v zachytávaní skutočného kontextu a tvaru budov v komplexnej mestskej krajine.

Precision, Recall (senzitivita) a F1 skóre

Metrika nazývaná precision vyjadruje podiel správne identifikovaných budov zo všetkých identifikovaných budov. Senzitivita (angl. “recall“) ilustruje schopnosť modelu zachytiť všetky skutočné budovy. Vysoká hodnota tejto metriky poukazuje na citlivosť modelu pri detekcii budov. F1 skóre kombinuje precision a senzitivitu do jednej metriky, poskytujúc vyvážený obraz výkonu modelu.

Complexity Aware IoU (cIoU)

Ďalšou použitou metrikou bola Complexity Aware IoU (cIoU) [7]. Táto metrika rieši nedostatky IoU tým, že vyvažuje presnosť segmentácie a komplexnosť tvarov polygónov. Zatiaľ čo IoU môže viesť model k vytváraniu veľmi komplexných polygónov, cIoU zaručuje, že komplexnosť polygónov (počet ich vrcholov) je zachovaná realistická, čím odráža skutočný tvar budov, ktoré sú obvykle málo komplexné.

N Ratio Metrika

Metrika N ratio je doplnkovým komponentom v našej vyhodnocovacej stratégii. Porovnáva počet vrcholov v našich predpovedaných tvaroch s tými v skutočných budovách [7]. Tým nám metrika pomáha porozumieť, ako presne náš model replikuje detailnú štruktúru budov.

Max Tangent Angle Error (MTAE)

Na zaistenie čistej geometrie pri extrakcii budov, je dôležité presné meranie pravidelnosti kontúr. Chyba maximálneho uhla dotyčníc (resp. Max Tangent Angle Error (MTAE)) [1] je metrika navrhnutá presne pre tieto potreby, a je doplnením Intersection over Union (IoU) metriky. Špecificky cieli na nedostatok IoU metriky, ktorým je to, že segmentácia s okrúhlymi rohmi môže dosiahnuť vyššie skóre než segmentácia s presnejšími (ostrejšími) rohmi. Vyhodnocovaním zhody okrajov budov cez porovnávanie uhlov dotyčníc vo vybraných bodoch predikovaných a skutočných kontúr, MTAE efektívne penalizuje nepresnosti v orientácii okrajov. Toto zameranie na presnosť okrajov je dôležité pre produkovanie čistých vektorových reprezentácií budov, zdôrazňujúc dôležitosť presného vymedzenia hraníc v segmentačných úlohách.

Vyhodnotenie

Natrénované modely boli testované na veľkej dátovej množne leteckých snímok v plnej veľkosti (namiesto malých častí, pomocou ktorých bola sieť trénovaná). Takéto testovanie poskytuje presnejšie zobrazenie reálnych použití takýchto modelov. Na extrakciu budov zo snímok v plnej veľkosti sme použili techniku posuvného okna, čím boli vytvorené predikcie po jednotlivých segmentoch obrázku. Na okraje prekrývajúcich sa segmentov bola použitá pokročilá priemerovacia technika, dôležitá pre minimalizáciu nežiadúcich efektov a zachovanie konzistentnosti v rámci predikčnej mapy. Výstupná predikčná mapa v plnej veľkosti bola následne vektorizovaná do presných vektorových polygónov s použitím algoritmu Active Skeleton Model (ASM).

Výsledky

Tabuľka 2: Výsledky trénovania modelov pre základný prístup (učenie s učiteľom) a prístupy učenia s čiastočným učiteľom s rôznymi podielmi použitých anotovaných a neanotovaných obrázkov.

Výsledky z experimentov, odrážajúce výkon segmentačného modelu natrénovaného s rôznymi nastaveniami, odhalili zaujímavé zistenia (viď. Tabuľka 2). Vyhodnotili sme výkon základného modelu (len supervizovaný prístup) a výkon modelov trénovaných metódami učenia s čiastočným učiteľom s použitím rôznych podielov anotovaných a neanotovaných dát (1:1, 1:3, a 1:5).

  1. IoU: hodnota IoU metriky bola pre základný model na hodnote 80.50%. S prínosom neanotovaných dát do trénovacieho procesu pozorujeme stabilný nárast, dosahujúc až 85.77%, s použitím pomeru 1:5 anotovaných k neanotovaným obrázkom.
  2. Precision, senzitivita a F1 skóre: Hodnota metriky precision sa zlepšila z hodnoty 85.75% pre základný model na hodnotu 90.04% pre model s použitým podielom 1:5. Podobne senzitivita sa zľahka zvýšila z hodnoty 94.27% na 94.76%. F1 skóre taktiež narástlo z hodnoty 89.81% na 92.34%. Tieto zlepšenia naznačujú, že zakomponovaním metódy s čiastočným učiteľom sa model stal presnejším a spoľahlivejším v predikciách.
  3. N Ratio a cIoU: Výsledky ukazujúznateľnýpokles v hodnote metriky N Ratio z hodnoty 2.33 pre základný model, na hodnotu 1.65 pre model s 1:5 podielom (anotované : neanotované), čo indikuje, že učenie s čiastočným učiteľom produkuje jednoduchšie, ale presnejšie vektorové tvary, ktoré viac pripomínajú skutočné štruktúry budov. Toto zjednodušenie tvarov pravdepodobne prispieva k zvýšenej použiteľnosti výstupu v praktických GIS aplikáciách. Súbežne, hodnoty metriky (cIoU) sa signifikantne zlepšili z hodnoty 48.89% pre základný model, na hodnotu 64.75% pre model s 1:5 podielom. Preto sa zdá, že učenie s čiastočným učiteľom nezlepšuje len zhodu predikovaných stôp budov a skutočných stôp budov, ale tiež generuje jednoduchšie vektorové tvary, ktoré sú bližšie reálnym geometrickým tvarom budov.
  4. Priemerná MTAE: Redukcia metriky MTAE z 18.60° na 17.45° pri použití učenia s čiastočným učiteľom predstavuje zlepšenie v geometrickej presnosti predikcií modelu. To naznačuje, že táto metóda učenia je lepšia pri zachytávaní architektonických prvkov budov s presnejšie definovanými uhlami, čo prispieva k produkcii topologicky jednoduchších a čistejších vektorových polygónov.

Trénovanie na HPC

HPC konfigurácia

Trénovanie bolo realizované na HPC klastri Devana vybavenom dostatočnými výpočtovými zdrojmi. HPC klaster Devana disponuje 8 GPU uzlami. Každý GPU uzol obsahuje 4 GPU karty NVIDIA A100 s kapacitou VRAM  40GB, 64 jadier CPU a 256GB kapacity RAM. Plánovanie úloh zabezpečuje systém Slurm.

PyTorch Lightning knižnica

Na paralelizáciu sme použili knižnicu PyTorch Lightning, ktoré poskytuje užívateľsky priateľské prostredie pre prácu s viacerými GPU. Táto knižnica umožňuje užívateľovi špecifikovať počet GPU, počet výpočtových uzlov, poskytuje rôzne distribuované stratégie a možnosť mixed-precision trénovania.

Slurm a PyTorch Lightning nastavenie

Pri trénovaní pomocou 1 GPU vyzerala naša Slurm konfigurácia nasledovne:
#SBATCH –partition=ngpu
#SBATCH –gres=gpu:1
#SBATCH –cpus-per-task=16
#SBATCH –mem=64000

A nastavenie PyTorch Lightning pre Trainer:

trainer = Trainer(accelerator=”gpu”, devices=1)

Takto sme alokovali jednu GPU kartu zo štyroch dostupných na danom uzle, a 16 CPU zo 64 dostupných, následkom čoho máme 16 workerov pre data loadery. Keďže učenie s čiastočným učiteľom využíva dva data loadery, (jeden pre anotované a ďalší pre neanotované dáta), alokovali sme 8 workerov pre každý z nich. Je dôležité zaručiť, aby celkový počet jadier pre data loadery nepresiahol počet dostupných jadier, pretože trénovanie môže zlyhať.

Distribuované dátovo-paralelné (DDP) trénovanie

S použitím PyTorch Lightning distribuovaného dátovo-paralelného trénovania (DDP) sme dosiahli, že každá použitá GPU bola operovaná nezávisle:

  • Každá GPU spracovala časť dátovej sady.
  • Všetky procesy inicializovali model nezávisle.
  • Všetky procesy vykonali dopredné a spätné šírenie paralelne.
  • Gradienty boli synchronizované a spriemerované medzi procesmi.
  • Každý proces aktualizoval svoj optimalizátor individuálne.

S týmto prístupom vypočítame počet data loaderov nasledovne: pre učenie s čiastočným učiteľom v prostredí jedného uzla so 4 GPU kartami a dvoma typmi data loaderov, máme 8 data loaderov, pričom každý má 8 workerov – dohromady 64 workerov.

Na plné využitie jedného uzla so 4 GPU sme použili nasledovnú konfiguráciu:

#SBATCH –partition=ngpu

#SBATCH –gres=gpu:4

#SBATCH –exclusive

#SBATCH –cpus-per-task=64

#SBATCH –mem=256000

Kľúčové slovo „–exclusive“ znamená, že daný výpočtový uzol nebude súčasne poskytnutý inému používateľovi. Špecifikácie „–cpus-per-task=64“ a „–mem=256000“ sú v danom nastavení redundantné, nakoľko sa použijú všetky výpočtové zdroje daného uzla.

PyTorch Lightning Trainer, nastavíme nasledovne:

trainer = Trainer(accelerator=”gpu”, devices=4, strategy=”ddp”)

Využitie viacerých výpočtových uzlov

S použitím PyTorch Lightning knižnice je tiež možné využiť viacero výpočtových uzlov v HPC systéme. Napríklad, využitie 4 uzlov so 4 GPU kartami na každom uzle (dohromady 16 GPU) bolo konfigurované:

trainer = Trainer(accelerator=”gpu”, devices=4, strategy=”ddp”, num_nodes=4)

Analogicky, Slurm konfigurácia bola nastavená takto:

#SBATCH –nodes=4

#SBATCH –ntasks-per-node=4

#SBATCH –gres=gpu:4

Tieto nastavenia a výsledky zdôrazňujú škálovateľnosť a flexibilitu komplexného trénovacieho procesu modelov strojového učenia v HPC prostredí, najmä pre úlohy, ktoré vyžadujú významné výpočtové zdroje, ako je napríklad naša úloha využívajúca učenie s čiastočným učiteľom v geopriestorovej dátovej analýze.

Analýza škálovateľnosti trénovania

Tabuľka 3: Výsledky trénovania prístupov učenia s učiteľom a učenia s čiastočným učiteľom s 1, 2, 4 a 8 GPU. Pre každú konfiguráciu je uvedený čas na jednu epochu a pomer urýchlenia proti 1 GPU.

V analýze škálovateľnosti trénovania sme dôkladne preskúmali vplyv rozširovania výpočtových zdrojov na efektívnosť trénovania modelov s využitím knižnice PyTorch Lightning.
Tento prieskum zahŕňal metódy učenia s učiteľom aj čiastočným učiteľom s dôrazom na zvyšovanie počtu GPU kariet, vrátane prístupu využívajúceho 2 uzly (8 GPU).

Obrázok 5: Urýchlenie pre trénovanie supervizovanou a nesupervizovanou metódou vzhľadom na počet použitých GPU. Pre porovnanie je uvedené aj ideálne (lineárne) urýchlenie. Učenie s čiastočným učiteľom je bližšie ideálnemu škálovaniu, t.j. efektívnejšie využíva výpočtové zdroje.

Kľúčovým zistením z tejto analýzy je, že nárast v pomeroch urýchlenia pre učenie s učiteľom nie je priamo úmerný počtu použitých GPU kariet. Ideálne, zdvojnásobenie počtu GPU kariet by malo zdvojnásobiť urýchlenie (t.j., napr. použitie 4 GPU kariet by malo mať za následok štvornásobné urýchlenie voči jednej GPU karte). Skutočné hodnoty urýchlenia boli nižšie než ideálne hodnoty. Tento nesúlad možno pripísať tzv. overhead-u (.j. nutnému navýšeniu operácií, ako transfer dát, I/O a pod. a tým pádom aj celkovému trvaniu výpočtu) asociovanému s manažovaním viacerých GPU kariet a výpočtových uzlov, obzvlášť synchronizácii dát cez všetky GPU karty, čo má za následok pokles efektívnosti.

Učenie s čiastočným učiteľom ukázalo mierne iný trend, viac približujúci sa ideálnemu (lineárnemu) nárastu urýchlenia. Zdá sa, že komplexnosť a vyššie výpočtové nároky učenia s čiastočným učiteľom zmierňujú dopad overhead nákladov a tým umožňujú efektívnejšie využívanie viacerých GPU. Napriek výzvam spojeným so synchronizáciou dát cez viacero GPU kariet a výpočtových uzlov, vyššie výpočtové nároky učenia s čiastočným učiteľom umožňujú efektívnejšie škálovanie zdrojov, t.j. urýchlenie bližšie ideálnemu scenáru.

Záver

Výskum predstavený v tejto práci úspešne demonštruje efektívnosť integrácie metódy UniMatch, ktorá patrí medzi metódy učenia s čiastočným učiteľom, do Frame Field learning metódy, pre úlohy extrakcie budov z leteckých snímok. Táto integrácia primárne adresuje notorický nedostatok anotovaných dát v aplikáciách hlbokého učenia v geografických informačných systémoch (GIS) a navyše, poskytuje škálovateľný a efektívny prístup z hľadiska úspory nákladov.

Výsledky sumarizované v tejto štúdii indikujú, že použitie učenia s čiastočným učiteľom významne zlepšuje výkon modelu vo viacerých kľúčových metrikách, vrátane  Intersection over Union (IoU), presnosti pozitívnych predikcií, senzitivity, F1 skóre, N Ratio, complexity-aware IoU (cIoU), a priemernej chyby Max Tangent Angle Error (MTAE). Obzvlášť, zlepšenia v metrikách IoU a cIoU zdôrazňujú zvýšenú presnosť modelu vo vymedzovaní stôp budov a generovaní vektorových tvarov, ktoré vierohodne reprezentujú skutočné štruktúry. Tento výsledok je dôležitý pre aplikácie urbanistického plánovania, environmentálne štúdie a manažment infraštruktúry, kde sú precízne mapovanie a popis budov kľúčové.

Prezentovaná metodika, ktorá kombinuje Frame Field learning s inovatívnym UniMatch prístupom, preukázala, že je vysoko efektívna vo využívaní kombinácie anotovaných a neanotovaných dát. Táto stratégia nielen že zlepšuje geometrickú presnosť predikcií modelu, ale tiež zaručuje generovanie jednoduchších a topologicky presnejších vektorových polygónov. Navyše, škálovateľnosť a efektívnosť trénovania na HPC systéme Devana s použitím knižnice PyTorch Lightning a distribuovanej, dátovo-paralelnej stratégie (DDP) bola kľúčová pre zvládnutie tak výpočtovo náročných úloh, akým je učenie s čiastočným učiteľom nad príslušnými dátami, v časovom rozsahu rádovo desiatok minút, až hodín.

Práca zdôrazňuje potenciál učenia s čiastočným učiteľom v zlepšovaní automatickej extrakcie budov z leteckých snímok. Implementácia UniMatch do Frame Field learning metódy predstavuje významný krok vpred, poskytujúc robustné riešenie pre výzvy spojené s nedostatkom dát a potreby vysokej presnosti geopriestorovej dátovej analýzy. Tento prístup zlepšuje efektívnosť a presnosť extrakcie budov, a taktiež otvára nové možnosti pre aplikácie metód učenia s čiastočným učiteľom v GIS a príbuzných oblastiach.

Poďakovanie

Výskum bol realizovaný s podporou Národného kompetenčného centra pre HPC, projektu EuroCC 2 a Národného Superpočítačového Centra na základe dohody o grante 101101903-EuroCC 2-DIGITALEUROHPC-JU-2022-NCC-01.

Časť výskumu bola realizovaná s využitím výpočtovej infraštruktúry obstaranej v projekte Národné kompetenčné centrum pre vysokovýkonné počítanie (kód projektu: 311070AKF2) financovaného z Európskeho fondu regionálneho rozvoja, Štrukturálnych fondov EU Informatizácia spoločnosti, operačného programu Integrovaná infraštruktúra 2014-2020.

Autori:

Patrik Sabol – Geodeticca Vision s.r.o., Floriánska 19, 044 01 Košice, Slovenská republika

 Bibiána Lajčinová – Národné Superpočítačové Centrum, Dúbravská cesta 3484/9, 84104 Bratislava-Karlová Ves, Slovenská republika

Plná verzia článku SK

Plná verzia článku EN

Literatúra:

[1] Nicolas Girard, Dmitriy Smirnov, Justin Solomon, and Yuliya Tarabalka. “Polygonal Building Extraction by Frame Field Learning”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (June 2021), pp. 5891-5900.

[2] L. Yang, L. Qi, L. Feng, W. Zhang, and Y. Shi. “Revisiting Weak-to-Strong Consistency in Semi-Supervised Semantic Segmentation”. In: 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (June 2023), pp. 7236-7246. doi: 10.1109/CVPR52729.2023.00699.

[3] Kihyuk Sohn, David Berthelot, Chun-Liang Li, Zizhao Zhang, Nicholas Carlini, Ekin D. Cubuk, Alex Kurakin, Han Zhang, and Colin Raffel. “FixMatch: Simplifying Semi-Supervised Learning with Consistency and Confidence”. In: CoRR, vol. abs/2001.07685 (2020). Available: https://arxiv.org/abs/2001.07685.

[4] Emmanuel Maggiori, Yuliya Tarabalka, Guillaume Charpiat, and Pierre Alliez. “Can Semantic Labeling Methods Generalize to Any City? The Inria Aerial Image Labeling Benchmark”. In: IEEE International Geoscience and Remote Sensing Symposium (IGARSS) (2017). IEEE.

[5] Adrian Boguszewski, Dominik Batorski, Natalia Ziemba-Jankowska, Tomasz Dziedzic, and Anna Zambrzycka. “LandCover.ai: Dataset for Automatic Mapping of Buildings, Woodlands, Water and Roads from Aerial Imagery”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops (June 2021), pp. 1102-1110.

[6] “Ortofotomozaika.” Geoportal SK. Accessed February 14, 2024. https://www.geoportal.sk/sk/zbgis/ortofotomozaika/.

[7] Stefano Zorzi, Shabab Bazrafkan, Stefan Habenschuss, and Friedrich Fraundorfer. “PolyWorld: Polygonal Building Extraction with Graph Neural Networks in Satellite Images”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022), pp. 1848-1857.

 

 



Mapovanie polohy a výšky stromov v PointCloud dátach získaných pomocou LiDAR technológie 25 júl - Cieľom spolupráce medzi Národným superpočítačovým centrom (NSCC) a firmou SKYMOVE, v rámci projektu Národného kompetenčného centra pre HPC, bol návrh a implementácia pilotného softvérového riešenia pre spracovanie dát získaných technológiou LiDAR (Light Detection and Ranging) umiestnených na dronoch.
Workshop: POP3 Profiling and Optimisation Tools 16 júl - Pozývame vás na zaujímavé podujatie POP3 Profiling and Optimisation Tools 46th VI-HPS Tuning Workshop. Podujatie je organizované POP3 CoE v spolupráci s Národnými kompetenčnými centrami pre HPC zo Slovenska, Česka, Poľska a Rakúska Maďarska a Slovinska.
Call for Ideas: Hľadáme slovenských MSP partnerov pre projektové konzorcium FFPlus 4 júl - NCC Slovakia hľadá slovenských MSP partnerov na vytvorenie konzorcia pre návrh prestížneho projektu FFPlus. Cieľom je využiť vysokovýkonné počítanie pri riešení špecifických obchodných výziev zahŕňajúcich napr. modelovanie a simulácie, analýzu údajov, AI atď.
Kategórie
Všeobecné

Regionálne stretnutie národných kompetenčných centier pre HPC v strednej Európe

Regionálne stretnutie národných kompetenčných centier pre HPC v strednej Európe

Zástupcovia národných kompetenčných centier pre HPC zo stredoeurópskeho regiónu sa 10. júna stretli na treťom stretnutí stredoeurópskej pracovnej skupiny NCC pre HPC. Hybridné podujatie zorganizovalo NCC Rakúsko v Grundlsee. Workshopu sa zúčastnili kompetenčné centra pre HPC z PoľskaRakúskaChorvátskaČeskej republikySlovenskaSlovinska Maďarska.

Kompetenčné centra sa venovali téme spolupráci medzi NCC a ďalšími inštitúciami, ako aj zlepšovaniu firemných profilov na LinkedIn. Podujatie otvoril vedúci rakúskeho kompetenčného centra pre vysokovýkonné počítanie Markus Stöhr. Nasledovalo krátke predstavenie každého kompetenčného centra počas ktorého vedúci jednotlivých NCC predstavili nielen členov tímu, ale aj najdôležitejšie témy, ktorým by sa chceli počas stretnutia venovať. Nasledovala moderovaná diskusia o vyššie spomenutých témach pod vedením Markusa Stöhra a prehľad a aktualizácia spolupráce v oblasti tréningu, ktorú viedla Claudia Blaas-Schenner.

Ďalšou veľmi zaujímavou témou workshopu bola optimalizácia LinkedIn profilu. Tento interný workshop bol zameraný na best practices pre vytvorenie profesionálne vyzerajúcej LinkedIn stránky. Workshop bol určený pre všetkých záujemcov o zlepšenie svojho osobného profilu ale aj business page. Workshop viedla Natascha Trzepizur, odborníčka na obsahový marketing z INiTS vo Viedni.

Posledná sekcia s názvom AI Focus bola zameraná na:

  • AI generované reportovanie: Diskusia o využití umelej inteligencie pri tvorbe reportov. Prednášajúci: Markus Stöhr, Simeon Harrison, Thomas Mayerhofer.
  • Séria tréningov: AI pre priemysel Diskusia o sérii tréningov zameraných na využitie AI v priemysle. Prednášajúci: Simeon Harrison, Thomas Mayerhofer.

Stretnutie pracovnej skupiny stredoeurópskych NCC bolo jedinečnou príležitosťou na výmenu skúseností, prehĺbenie spolupráce a zlepšenie odborných kompetencií účastníkov. Ďakujeme rakúskemu kompetenčnému centru za organizáciu tohto skvelého podujatia a tešíme sa na ďalšie stretnutie nasej pracovnej skupiny!

Mapovanie polohy a výšky stromov v PointCloud dátach získaných pomocou LiDAR technológie 25 júl - Cieľom spolupráce medzi Národným superpočítačovým centrom (NSCC) a firmou SKYMOVE, v rámci projektu Národného kompetenčného centra pre HPC, bol návrh a implementácia pilotného softvérového riešenia pre spracovanie dát získaných technológiou LiDAR (Light Detection and Ranging) umiestnených na dronoch.
Workshop: POP3 Profiling and Optimisation Tools 16 júl - Pozývame vás na zaujímavé podujatie POP3 Profiling and Optimisation Tools 46th VI-HPS Tuning Workshop. Podujatie je organizované POP3 CoE v spolupráci s Národnými kompetenčnými centrami pre HPC zo Slovenska, Česka, Poľska a Rakúska Maďarska a Slovinska.
Call for Ideas: Hľadáme slovenských MSP partnerov pre projektové konzorcium FFPlus 4 júl - NCC Slovakia hľadá slovenských MSP partnerov na vytvorenie konzorcia pre návrh prestížneho projektu FFPlus. Cieľom je využiť vysokovýkonné počítanie pri riešení špecifických obchodných výziev zahŕňajúcich napr. modelovanie a simulácie, analýzu údajov, AI atď.
Kategórie
Všeobecné

Nové partnerstvo so SOPK Bratislava

Nové partnerstvo so SOPK Bratislava

S potešením oznamujeme nové partnerstvo medzi Národným kompetenčným centrom pre vysokovýkonné počítanie (NCC pre HPC) a Slovenskou obchodnou a priemyselnou komorou pre Bratislavský región (SOPK BA). Toto spojenie je súčasťou programu HPC Ambassador a jeho cieľom je podporiť inovácie a adopciu HPC technológií medzi malými a strednými podnikmi (MSP) na Slovensku. Cieľom tejto spolupráce je zvýšiť informovanosť a podporiť implementáciu HPC technológií v slovenských podnikoch. NCC pre HPC a SOPK BA plánujú realizovať rôzne podujatia, školenia a kampane, ktoré poskytnú MSP potrebné vedomosti a nástroje na efektívne využívanie vysokovýkonných počítačových technológií.

Mechanizmus spolupráce

V rámci tejto spolupráce bude NCC pre HPC pravidelne poskytovať informácie o svojich aktivitách, školeniach a službách, ktoré sú relevantné pre členov SOPK BA. SOPK BA bude tieto informácie šíriť medzi svojich členov a bude identifikovať podniky, ktoré sú pripravené na implementáciu HPC technológií, čím ich prepojí s NCC pre HPC. Tento proces umožní podnikom získať odbornú pomoc a podporu pri rôznych výskumných a vývojových projektoch.

Prínosy pre MSP

Partnerstvo prináša množstvo výhod pre slovenské MSP, medzi ktoré patria:

  • Prístup k výkonným výpočtovým zdrojom.
  • Organizácia školení a informačných prednášok zameraných na HPC technológie.
  • Podpora pri implementácii HPC technológií vo výskume a vývoji.
  • Spolupráca s odborníkmi na realizáciu „proof-of-concept“ projektov.

Tešíme sa na úspešnú spoluprácu a mnohé spoločné iniciatívy, ktoré prinesú pridanú hodnotu slovenskému podnikateľskému prostrediu.


Mapovanie polohy a výšky stromov v PointCloud dátach získaných pomocou LiDAR technológie 25 júl - Cieľom spolupráce medzi Národným superpočítačovým centrom (NSCC) a firmou SKYMOVE, v rámci projektu Národného kompetenčného centra pre HPC, bol návrh a implementácia pilotného softvérového riešenia pre spracovanie dát získaných technológiou LiDAR (Light Detection and Ranging) umiestnených na dronoch.
Workshop: POP3 Profiling and Optimisation Tools 16 júl - Pozývame vás na zaujímavé podujatie POP3 Profiling and Optimisation Tools 46th VI-HPS Tuning Workshop. Podujatie je organizované POP3 CoE v spolupráci s Národnými kompetenčnými centrami pre HPC zo Slovenska, Česka, Poľska a Rakúska Maďarska a Slovinska.
Call for Ideas: Hľadáme slovenských MSP partnerov pre projektové konzorcium FFPlus 4 júl - NCC Slovakia hľadá slovenských MSP partnerov na vytvorenie konzorcia pre návrh prestížneho projektu FFPlus. Cieľom je využiť vysokovýkonné počítanie pri riešení špecifických obchodných výziev zahŕňajúcich napr. modelovanie a simulácie, analýzu údajov, AI atď.
Kategórie
Všeobecné

Nový Ambasádor pre HPC: Únia klastrov Slovenska

Nový Ambasádor pre HPC: Únia klastrov Slovenska

S radosťou oznamujeme, že Národné kompetenčné centrum pre HPC uzavrelo nové partnerstvo s Úniou klastrov Slovenska (ÚKS) v rámci HPC Ambassador programu . Tento významný krok posilní naše spoločné úsilie v podpore inovácií a adopcii vysokovýkonných počítačových technológií medzi klastrami a ich členmi z rôznych sektorov, s ddôrazom na malé a stredné podniky na Slovensku.

Spoločné ciele a vízie

Naším spoločným cieľom je zvyšovať povedomie a podporovať adopciu HPC technológií medzi slovenskými klastrami, ktoré združujú podniky, výskumné inštitúcie a akademickú sféru. V spolupráci s ÚKS budeme organizovať podujatia, školenia a informačné kampane, ktoré poskytnú členom klastrov potrebné znalosti a nástroje na využitie HPC v ich aktivitách.

Ako spolupracujeme

V rámci tejto spolupráce bude NCC pravidelne zdieľať informácie o svojich aktivitách, školeniach a službách, ktoré sú relevantné pre členov a partnerov ÚKS. ÚKS zase využije svoje komunikačné kanály na informovanie svojich členov o týchto príležitostiach a prepojí podniky pripravené na využitie HPC technológií s NCC. Členovia ÚKS tiež môžu získať prístup k odbornej pomoci a podpore pri rôznych výskumných alebo vývojových projektoch.

Veríme, že toto partnerstvo výrazne prispeje k rozvoju inovačného ekosystému na Slovensku a pomôže členom klastrov stať sa konkurencieschopnejšími na globálnom trhu.

Tešíme sa na úspešnú spoluprácu a mnohé spoločné projekty, ktoré nás čakajú!


Mapovanie polohy a výšky stromov v PointCloud dátach získaných pomocou LiDAR technológie 25 júl - Cieľom spolupráce medzi Národným superpočítačovým centrom (NSCC) a firmou SKYMOVE, v rámci projektu Národného kompetenčného centra pre HPC, bol návrh a implementácia pilotného softvérového riešenia pre spracovanie dát získaných technológiou LiDAR (Light Detection and Ranging) umiestnených na dronoch.
Workshop: POP3 Profiling and Optimisation Tools 16 júl - Pozývame vás na zaujímavé podujatie POP3 Profiling and Optimisation Tools 46th VI-HPS Tuning Workshop. Podujatie je organizované POP3 CoE v spolupráci s Národnými kompetenčnými centrami pre HPC zo Slovenska, Česka, Poľska a Rakúska Maďarska a Slovinska.
Call for Ideas: Hľadáme slovenských MSP partnerov pre projektové konzorcium FFPlus 4 júl - NCC Slovakia hľadá slovenských MSP partnerov na vytvorenie konzorcia pre návrh prestížneho projektu FFPlus. Cieľom je využiť vysokovýkonné počítanie pri riešení špecifických obchodných výziev zahŕňajúcich napr. modelovanie a simulácie, analýzu údajov, AI atď.
Kategórie
Všeobecné

NCC Slovensko & NCC Poľsko: ORCA Hands-on Workshop

NCC Slovensko & NCC Poľsko: ORCA Hands-on Workshop

V dňoch 21. a 22. mája 2024 sa v Bratislave uskutočnil ORCA hands-on workshop. Tento dvojdňový workshop, organizovaný národnými kompetenčnými centrami pre HPC zo Slovenska a Poľska bol zameraný na softvérový kvantovo-chemický balík ORCA. Účastníci sa oboznámili so základmi a vybranými pokročilými technikami práce s ORCA, pričom veľkú časť tvorili najmä praktické cvičenia.


Workshop začal registráciou a privítaním účastníkov, po ktorom nasledovala prezentácia projektu kompetenčných centier EuroCC 2. Lektor Klemens Noga z Cyfronetu, HPC centra v Krakowe, predstavil poľský HPC ekosystém a možnosti pre používateľov v oblasti výpočtovej chémie.

Počas prvého dňa sa lektor zameral na praktické aspekty nastavenia ORCA na HPC systémoch. Účastníkom priblížil nastavenie a fungovanie HPC klastrov, best practices pre inštaláciu ORCA a nástroj SLURM, ktorý slúži pre manažment výpočtových úloh. Účastníci boli oboznámení so štruktúrou a syntaxou vstupných súborov potrebných pre základné kvantové chemické výpočty, ako sú single-point výpočty energie, resp. vlastností a optimalizácia geometrie. Zaoberali sa aj analýzou výstupov, extrakciou užitočných informácií a vizualizáciou výsledkov pre ich lepšiu interpretáciu a prezentáciu.

Druhý deň začal pokročilejšími možnosťami výpočtov v ORCA. Účastníci sa naučili, ako nastaviť výpočty vibračných frekvencií, relativistických korekcií a spektroskopických vlastností. Lektor sa zameral aj na vysvetlenie metrík škálovateľnosti, stratégie na zlepšenie výkonu a efektívnosti paralelných výpočtov na HPC systémoch, ktoré si účastníci vzápätí prakticky vyskúšali. Popoludí sa účastníci venovali výpočtom redox potenciálov a prešli prípadovými štúdiami pripravenými podľa ich vlastných podkladov. Posledná časť workshopu sa zaoberala riešením problémov pri výpočtoch a zdieľaním najlepších postupov na maximalizáciu efektívnosti a presnosti výpočtov v ORCA.

Súčasťou programu bola aj prehliadka superpočítača Devana vo Výpočtovom stredisku SAV. Podujatie poskytlo účastníkom základné znalosti a zručnosti pre prácu s balíkom ORCA v oblasti kvantovo-chemických výpočtov na HPC systémoch. Veríme, že workshop bol pre účastníkov prínosom a pomohol im v ich práci na vlastných výskumných projektoch. Balík ORCA je súčasťou softvérového vybavenia systému Devana a jeho licencia je voľne dostupná pre všetkých akademických používateľov.

Mapovanie polohy a výšky stromov v PointCloud dátach získaných pomocou LiDAR technológie 25 júl - Cieľom spolupráce medzi Národným superpočítačovým centrom (NSCC) a firmou SKYMOVE, v rámci projektu Národného kompetenčného centra pre HPC, bol návrh a implementácia pilotného softvérového riešenia pre spracovanie dát získaných technológiou LiDAR (Light Detection and Ranging) umiestnených na dronoch.
Workshop: POP3 Profiling and Optimisation Tools 16 júl - Pozývame vás na zaujímavé podujatie POP3 Profiling and Optimisation Tools 46th VI-HPS Tuning Workshop. Podujatie je organizované POP3 CoE v spolupráci s Národnými kompetenčnými centrami pre HPC zo Slovenska, Česka, Poľska a Rakúska Maďarska a Slovinska.
Call for Ideas: Hľadáme slovenských MSP partnerov pre projektové konzorcium FFPlus 4 júl - NCC Slovakia hľadá slovenských MSP partnerov na vytvorenie konzorcia pre návrh prestížneho projektu FFPlus. Cieľom je využiť vysokovýkonné počítanie pri riešení špecifických obchodných výziev zahŕňajúcich napr. modelovanie a simulácie, analýzu údajov, AI atď.
Kategórie
Všeobecné

MaX school: materials and molecular modelling with QUANTUM ESPRESSO

MaX school: materials and molecular modelling with QUANTUM ESPRESSO

Dávame vám do pozornosti online školu organizovanú MaX CoE v spolupráci s Národnými kompetenčnými centrami pre vysokovýkonné počítanie z Česka, Rakúska, Slovenska, Slovinska, Poľska a Maďarska. Podujatie bude prebiehať online v dňoch 19. – 21. júna 2024.

Kurz ponúka komplexný program navrhnutý tak, aby pokrýval hlavné funkcie kódu Quantum ESPRESSO. Dôraz sa kladie na praktický rozvoj zručností. Počas kurzu budete mať možnosť oboznámiť sa nielen s teóriou, ale získať aj praktické skúsenosti. Cieľová skupina je začiatočníkov po mierne pokročilých. Cieľom je vybaviť účastníkov základnými vedomosťami a zručnosťami potrebnými na efektívne využívanie Quantum ESPRESSO vo výskume a akademickej činnosti.

Podujatie je určená pre účastníkov s vedomosťami z oblasti fyziky či chémie (fyzika kondenzovaného stavu), ktorí majú záujem naučiť sa používať Quantum ESPRESSO.

Kurz má pokryť hlavné funkcie kódu a poskytnúť základné užívateľské zručnosti, ako je kompilácia a jednoduché skriptovanie.

Viac informácií o podujatí

Registrácia


Mapovanie polohy a výšky stromov v PointCloud dátach získaných pomocou LiDAR technológie 25 júl - Cieľom spolupráce medzi Národným superpočítačovým centrom (NSCC) a firmou SKYMOVE, v rámci projektu Národného kompetenčného centra pre HPC, bol návrh a implementácia pilotného softvérového riešenia pre spracovanie dát získaných technológiou LiDAR (Light Detection and Ranging) umiestnených na dronoch.
Workshop: POP3 Profiling and Optimisation Tools 16 júl - Pozývame vás na zaujímavé podujatie POP3 Profiling and Optimisation Tools 46th VI-HPS Tuning Workshop. Podujatie je organizované POP3 CoE v spolupráci s Národnými kompetenčnými centrami pre HPC zo Slovenska, Česka, Poľska a Rakúska Maďarska a Slovinska.
Call for Ideas: Hľadáme slovenských MSP partnerov pre projektové konzorcium FFPlus 4 júl - NCC Slovakia hľadá slovenských MSP partnerov na vytvorenie konzorcia pre návrh prestížneho projektu FFPlus. Cieľom je využiť vysokovýkonné počítanie pri riešení špecifických obchodných výziev zahŕňajúcich napr. modelovanie a simulácie, analýzu údajov, AI atď.